Matches in SemOpenAlex for { <https://semopenalex.org/work/W1598501967> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W1598501967 abstract "The field of statistical genetics has been the area of a great deal of active research in recent years; due in part to dramatic advances in sequencing technology which has led to vast amounts of genomic data becoming available at lower and lower costs. The data from these sequencing efforts is not only copious, but is also characterized by significant levels of experimental noise. Processing data of this nature to draw statistically significant inferences requires dealing with a number of challenges, both statistical and algorithmic. In this chapter we will not discuss the very substantial statistical issues which arise in extracting genome sequences, but rather will focus on computational and algorithmic issues which arise in drawing biological inferences once the sequence is known. Event though our discussion will be oriented more towards applications of graph theory, it is worth keeping in mind that statistical considerations will still play a role due the intrinsically probabilistic nature of Mendelian Genetics as well as finite sample sizes. We will first begin by reviewing earlier well known work which will serve to illustrate the utility of graph theoretical concepts in dealing with genomic data. The data at our disposal are assumed to consist of observations of at a large number of locations (tens of thousands or possibly much more) on multiple chromosomes for a collections of individuals, or plants or animals; for now we assume that these individuals are related with known parent offpsring information. We restrict our attention to species which have just two chromosomes, but much of what we will discuss can be generalized to species with more than two chromosomes although the computational implementation could be challenging. At any locus (precise location on a specified chromosome) we assume that there are two or more possible alleles in the population, the precise number is assumed to differ from locus to locus. The number of possible observable genotypes at each locus will thus also vary from locus to locus. In a population of related individuals with known parent offspring relations between individuals (i.e. pedigree) it is possible to predict the probability for an offspring to receive a given allele from a parent based on Mendelian Genetics. If we represent a given locus for a given individual by a vertex, we can assign multiple possible states to each vertex depending on how many genotypes are possible. Since genetic information flows from parents to offspring" @default.
- W1598501967 created "2016-06-24" @default.
- W1598501967 creator A5045484613 @default.
- W1598501967 creator A5068167469 @default.
- W1598501967 date "2012-03-02" @default.
- W1598501967 modified "2023-10-17" @default.
- W1598501967 title "Applications of Graphical Clustering Algorithms in Genome Wide Association Mapping" @default.
- W1598501967 cites W1490360753 @default.
- W1598501967 cites W1593793857 @default.
- W1598501967 cites W1969388700 @default.
- W1598501967 cites W1969585535 @default.
- W1598501967 cites W1989804913 @default.
- W1598501967 cites W2003500802 @default.
- W1598501967 cites W2013824028 @default.
- W1598501967 cites W2015408724 @default.
- W1598501967 cites W2021883760 @default.
- W1598501967 cites W2030705868 @default.
- W1598501967 cites W2037139490 @default.
- W1598501967 cites W2062026889 @default.
- W1598501967 cites W2073624918 @default.
- W1598501967 cites W2085550081 @default.
- W1598501967 cites W2089348121 @default.
- W1598501967 cites W2090361527 @default.
- W1598501967 cites W2098126593 @default.
- W1598501967 cites W2101517901 @default.
- W1598501967 cites W2107755054 @default.
- W1598501967 cites W2108169091 @default.
- W1598501967 cites W2110065044 @default.
- W1598501967 cites W2148290479 @default.
- W1598501967 cites W2157752701 @default.
- W1598501967 cites W2158489424 @default.
- W1598501967 cites W2165952534 @default.
- W1598501967 cites W2166774283 @default.
- W1598501967 cites W2179629101 @default.
- W1598501967 cites W2305192910 @default.
- W1598501967 cites W2313698524 @default.
- W1598501967 cites W2499952289 @default.
- W1598501967 cites W2551018111 @default.
- W1598501967 cites W606008011 @default.
- W1598501967 cites W635899384 @default.
- W1598501967 cites W950232748 @default.
- W1598501967 cites W2095820510 @default.
- W1598501967 doi "https://doi.org/10.5772/36314" @default.
- W1598501967 hasPublicationYear "2012" @default.
- W1598501967 type Work @default.
- W1598501967 sameAs 1598501967 @default.
- W1598501967 citedByCount "0" @default.
- W1598501967 crossrefType "book-chapter" @default.
- W1598501967 hasAuthorship W1598501967A5045484613 @default.
- W1598501967 hasAuthorship W1598501967A5068167469 @default.
- W1598501967 hasBestOaLocation W15985019671 @default.
- W1598501967 hasConcept C11413529 @default.
- W1598501967 hasConcept C124101348 @default.
- W1598501967 hasConcept C142853389 @default.
- W1598501967 hasConcept C154945302 @default.
- W1598501967 hasConcept C15744967 @default.
- W1598501967 hasConcept C41008148 @default.
- W1598501967 hasConcept C542102704 @default.
- W1598501967 hasConcept C70721500 @default.
- W1598501967 hasConcept C73555534 @default.
- W1598501967 hasConcept C86803240 @default.
- W1598501967 hasConceptScore W1598501967C11413529 @default.
- W1598501967 hasConceptScore W1598501967C124101348 @default.
- W1598501967 hasConceptScore W1598501967C142853389 @default.
- W1598501967 hasConceptScore W1598501967C154945302 @default.
- W1598501967 hasConceptScore W1598501967C15744967 @default.
- W1598501967 hasConceptScore W1598501967C41008148 @default.
- W1598501967 hasConceptScore W1598501967C542102704 @default.
- W1598501967 hasConceptScore W1598501967C70721500 @default.
- W1598501967 hasConceptScore W1598501967C73555534 @default.
- W1598501967 hasConceptScore W1598501967C86803240 @default.
- W1598501967 hasLocation W15985019671 @default.
- W1598501967 hasLocation W15985019672 @default.
- W1598501967 hasOpenAccess W1598501967 @default.
- W1598501967 hasPrimaryLocation W15985019671 @default.
- W1598501967 hasRelatedWork W1979871427 @default.
- W1598501967 hasRelatedWork W1999627569 @default.
- W1598501967 hasRelatedWork W2348097614 @default.
- W1598501967 hasRelatedWork W2361460797 @default.
- W1598501967 hasRelatedWork W2380998760 @default.
- W1598501967 hasRelatedWork W2386949455 @default.
- W1598501967 hasRelatedWork W2387405106 @default.
- W1598501967 hasRelatedWork W2392374020 @default.
- W1598501967 hasRelatedWork W2573131093 @default.
- W1598501967 hasRelatedWork W763609066 @default.
- W1598501967 isParatext "false" @default.
- W1598501967 isRetracted "false" @default.
- W1598501967 magId "1598501967" @default.
- W1598501967 workType "book-chapter" @default.