Matches in SemOpenAlex for { <https://semopenalex.org/work/W159853726> ?p ?o ?g. }
- W159853726 endingPage "85" @default.
- W159853726 startingPage "37" @default.
- W159853726 abstract "It has become clear since about a decade ago, that the biosphere contains a variety of microorganisms that can live and grow in extreme environments. Hyperthermophilic microorganisms, present among Archaea and Bacteria, proliferate at temperatures of around 80-100 degrees C. The majority of the genera known to date are of marine origin, however, some of them have been found in continental hot springs and solfataric fields. Metabolic processes and specific biological functions of these organisms are mediated by enzymes and proteins that function optimally under these extreme conditions. We are now only starting to understand the structural, thermodynamic and kinetic basis for function and stability under conditions of high temperature, salt and extremes of pH. Insights gained from the study of such macromolecules help to extend our understanding of protein biochemistry and -biophysics and are becoming increasingly important for the investigation of fundamental problems in structure biology such as protein stability and protein folding. Extreme conditions in the biosphere require either the adaptation of the amino acid sequence of a protein by mutations, the optimization of weak interactions within the protein and at the protein-solvent boundary, the influence of extrinsic factors such as metabolites, cofactors, compatible solutes. Furthermore folding catalysts, known as chaperones, that assist the folding of proteins may be involved or increased protein protein synthesis in order to compensate for destruction by extreme conditions. The comparison of structure and stability of homologous proteins from mesophiles and hyperthermophiles has revealed important determinants of thermal stability of proteins. Rather than being the consequence of one dominant type of interactions or of a general stabilization strategy, it appears that the adaptation to high temperatures reflects a number of subtle interactions, often characteristic for each protein species, that minimize the surface energy and the hydration of apolar surface groups while burying hydrophobic residues and maximizing packing of the core as well as the energy due to charge-charge interactions and hydrogen bonds. In this article, mechanisms of intrinsic stabilization of proteins are reviewed. These mechanisms are found on different levels of structural organization. Among the extrinsic stabilization factors, emphasis is put on archaea chaperonins and their still strongly debated function. It will be shown, that optimization of weak protein-protein and protein-solvent interactions plays a key role in gaining thermostability. The difficulties in correlating suitable optimization criteria with real thermodynamic stability measures are due to experimental difficulties in measuring stabilization energies in large proteins or protein oligomers and will be discussed. Thus small single domain proteins or isolated domains of larger proteins may serve as model systems for large or multidomain proteins which due to the complexity of their thermal unfolding transitions cannot be analyzed by equilibrium thermodynamics. The analysis of the energetics of the thermal unfolding of a small, hyperthermostable DNA binding protein from Sulfolobus has revealed that a high melting temperature is not synonymous with a larger maximum thermodynamic stability. Finally, it is now well documented, that many thermophilic and hyperthermophilic proteins show a statistically increased number of salt bridges and salt bridge networks. However their contribution to thermodynamic and functional stability is still obscure." @default.
- W159853726 created "2016-06-24" @default.
- W159853726 creator A5038379324 @default.
- W159853726 creator A5056396456 @default.
- W159853726 date "1998-01-01" @default.
- W159853726 modified "2023-10-14" @default.
- W159853726 title "Proteins from hyperthermophiles: Stability and enzymatic catalysis close to the boiling point of water" @default.
- W159853726 cites W1494326194 @default.
- W159853726 cites W1503626128 @default.
- W159853726 cites W1510053656 @default.
- W159853726 cites W1524069975 @default.
- W159853726 cites W1524706855 @default.
- W159853726 cites W1529551630 @default.
- W159853726 cites W1532878531 @default.
- W159853726 cites W1545355924 @default.
- W159853726 cites W1559420025 @default.
- W159853726 cites W1563999781 @default.
- W159853726 cites W1583838105 @default.
- W159853726 cites W1599735103 @default.
- W159853726 cites W1724563161 @default.
- W159853726 cites W174261501 @default.
- W159853726 cites W1786526270 @default.
- W159853726 cites W1892996896 @default.
- W159853726 cites W1931164952 @default.
- W159853726 cites W1964610252 @default.
- W159853726 cites W1967561978 @default.
- W159853726 cites W1967747296 @default.
- W159853726 cites W1968020917 @default.
- W159853726 cites W1974347829 @default.
- W159853726 cites W1974988689 @default.
- W159853726 cites W1976321372 @default.
- W159853726 cites W1982904262 @default.
- W159853726 cites W1983326733 @default.
- W159853726 cites W1983659508 @default.
- W159853726 cites W1984212866 @default.
- W159853726 cites W1985842673 @default.
- W159853726 cites W1986550844 @default.
- W159853726 cites W1988778988 @default.
- W159853726 cites W1989477314 @default.
- W159853726 cites W1990911701 @default.
- W159853726 cites W1998514973 @default.
- W159853726 cites W1999724806 @default.
- W159853726 cites W2000305584 @default.
- W159853726 cites W2002365379 @default.
- W159853726 cites W2007592505 @default.
- W159853726 cites W2009115466 @default.
- W159853726 cites W2009695540 @default.
- W159853726 cites W2010785162 @default.
- W159853726 cites W2018866047 @default.
- W159853726 cites W2022058405 @default.
- W159853726 cites W2027978582 @default.
- W159853726 cites W2028410853 @default.
- W159853726 cites W2028854152 @default.
- W159853726 cites W2030627620 @default.
- W159853726 cites W2031105207 @default.
- W159853726 cites W2031497022 @default.
- W159853726 cites W2034757624 @default.
- W159853726 cites W2035407823 @default.
- W159853726 cites W2039015024 @default.
- W159853726 cites W2041447979 @default.
- W159853726 cites W2043174540 @default.
- W159853726 cites W2045514727 @default.
- W159853726 cites W2046218914 @default.
- W159853726 cites W2047044987 @default.
- W159853726 cites W2047519073 @default.
- W159853726 cites W2048620082 @default.
- W159853726 cites W2052015211 @default.
- W159853726 cites W2054576968 @default.
- W159853726 cites W2059085556 @default.
- W159853726 cites W2059730307 @default.
- W159853726 cites W2059890422 @default.
- W159853726 cites W2062535863 @default.
- W159853726 cites W2063213730 @default.
- W159853726 cites W2063808189 @default.
- W159853726 cites W2066147791 @default.
- W159853726 cites W2068265376 @default.
- W159853726 cites W2069297570 @default.
- W159853726 cites W2070184351 @default.
- W159853726 cites W2070989276 @default.
- W159853726 cites W2078574456 @default.
- W159853726 cites W2078678839 @default.
- W159853726 cites W2078933151 @default.
- W159853726 cites W2084196179 @default.
- W159853726 cites W2084196472 @default.
- W159853726 cites W2086780919 @default.
- W159853726 cites W2087946765 @default.
- W159853726 cites W2091654711 @default.
- W159853726 cites W2093969953 @default.
- W159853726 cites W2095375426 @default.
- W159853726 cites W2100220490 @default.
- W159853726 cites W2102406740 @default.
- W159853726 cites W2102933996 @default.
- W159853726 cites W2103794058 @default.
- W159853726 cites W2104021409 @default.
- W159853726 cites W2104951158 @default.
- W159853726 cites W2116076986 @default.
- W159853726 cites W2118864235 @default.
- W159853726 cites W2121372252 @default.