Matches in SemOpenAlex for { <https://semopenalex.org/work/W1598735087> ?p ?o ?g. }
- W1598735087 abstract "Periodic structures, such as frequency-selective surfaces (FSSs) and photonic band-gap (PBG) materials, exhibit total reflection in specific frequency bands while total transmission in other bands. They find numerous applications in a large field of the electromagnetic (EM) spectrum. For example, in the microwave region, they are used to increase the efficiency of reflector antennas. In the far-infrared region they are used in designing polarizers, beam splitters, mirrors for improving the pumping efficiency in molecular lasers, as components of infrared sensors, etc. To set a solid basis for the analysis of periodic structures, we have first studied the most commonly used technique, the integral equation (IE) solved by the method of moments (MoM). IE-MoM is particularly well-suited for the analysis of printed planar structures. In any IE-MoM numerical implementation the efficient evaluation of the corresponding Green's functions (GFs) is of paramount importance. This is especially true for IE analysis of periodic structures whose GFs are slowly converging infinite sums. The systematic study of existing acceleration algorithms of general and specific types, used to accelerate the evaluation of periodic GFs, has been performed. We propose a new and efficient method for acceleration of multilayered periodic GFs that successfully combines the advantages of Shanks' and Ewald's transform. In structures operating at higher frequencies (thin films in millimeter and submillimeter wave bands or with self supporting metallic plates) the thickness of metallic screens must be taken into account. The existing full-wave approaches for simulating these structures double the number of unknowns as compared to that one of the zero-thickness case. Moreover, the thick aperture problem asks for the computation of cavity Green's functions, which is a difficult and time-consuming task for apertures of arbitrary cross-sections. This thesis addresses the problem of scattering by periodic apertures in conducting screens of finite thickness by introducing an approximate and computationally efficient formulation. This formulation consists in treating the thick aperture as an infinitely thin one and in using the correction term in integral equation kernel that accounts for the screen thickness. The number of unknowns remains the same as in the zero-thickness screens and evaluation of complicated cavity Green's functions is obviated, which yields computationally efficient routines." @default.
- W1598735087 created "2016-06-24" @default.
- W1598735087 creator A5014782859 @default.
- W1598735087 date "2006-01-01" @default.
- W1598735087 modified "2023-09-23" @default.
- W1598735087 title "Numerical modeling of planar periodic structures in electromagnetics" @default.
- W1598735087 cites W162164768 @default.
- W1598735087 cites W1980177911 @default.
- W1598735087 cites W1984418988 @default.
- W1598735087 cites W2001676859 @default.
- W1598735087 cites W2011452255 @default.
- W1598735087 cites W2023412501 @default.
- W1598735087 cites W2023644772 @default.
- W1598735087 cites W2024833221 @default.
- W1598735087 cites W2027652501 @default.
- W1598735087 cites W2049232803 @default.
- W1598735087 cites W2054380687 @default.
- W1598735087 cites W2068945551 @default.
- W1598735087 cites W2073100761 @default.
- W1598735087 cites W2074398350 @default.
- W1598735087 cites W2091827823 @default.
- W1598735087 cites W2100586499 @default.
- W1598735087 cites W2102738805 @default.
- W1598735087 cites W2106472774 @default.
- W1598735087 cites W2112712308 @default.
- W1598735087 cites W2113346827 @default.
- W1598735087 cites W2114514682 @default.
- W1598735087 cites W2119969183 @default.
- W1598735087 cites W2126145239 @default.
- W1598735087 cites W2131569098 @default.
- W1598735087 cites W2134452878 @default.
- W1598735087 cites W2135836340 @default.
- W1598735087 cites W2140031843 @default.
- W1598735087 cites W2144914000 @default.
- W1598735087 cites W2144985591 @default.
- W1598735087 cites W2149870093 @default.
- W1598735087 cites W2152112296 @default.
- W1598735087 cites W2161843905 @default.
- W1598735087 cites W2165261801 @default.
- W1598735087 cites W36456075 @default.
- W1598735087 doi "https://doi.org/10.5075/epfl-thesis-3688" @default.
- W1598735087 hasPublicationYear "2006" @default.
- W1598735087 type Work @default.
- W1598735087 sameAs 1598735087 @default.
- W1598735087 citedByCount "0" @default.
- W1598735087 crossrefType "journal-article" @default.
- W1598735087 hasAuthorship W1598735087A5014782859 @default.
- W1598735087 hasConcept C105795698 @default.
- W1598735087 hasConcept C117896860 @default.
- W1598735087 hasConcept C120665830 @default.
- W1598735087 hasConcept C121332964 @default.
- W1598735087 hasConcept C121684516 @default.
- W1598735087 hasConcept C127413603 @default.
- W1598735087 hasConcept C134306372 @default.
- W1598735087 hasConcept C134786449 @default.
- W1598735087 hasConcept C185429906 @default.
- W1598735087 hasConcept C206844423 @default.
- W1598735087 hasConcept C24326235 @default.
- W1598735087 hasConcept C2777718760 @default.
- W1598735087 hasConcept C2780033567 @default.
- W1598735087 hasConcept C28843909 @default.
- W1598735087 hasConcept C2909720056 @default.
- W1598735087 hasConcept C33923547 @default.
- W1598735087 hasConcept C40308292 @default.
- W1598735087 hasConcept C41008148 @default.
- W1598735087 hasConcept C5917680 @default.
- W1598735087 hasConcept C62520636 @default.
- W1598735087 hasConcept C74650414 @default.
- W1598735087 hasConcept C75302062 @default.
- W1598735087 hasConceptScore W1598735087C105795698 @default.
- W1598735087 hasConceptScore W1598735087C117896860 @default.
- W1598735087 hasConceptScore W1598735087C120665830 @default.
- W1598735087 hasConceptScore W1598735087C121332964 @default.
- W1598735087 hasConceptScore W1598735087C121684516 @default.
- W1598735087 hasConceptScore W1598735087C127413603 @default.
- W1598735087 hasConceptScore W1598735087C134306372 @default.
- W1598735087 hasConceptScore W1598735087C134786449 @default.
- W1598735087 hasConceptScore W1598735087C185429906 @default.
- W1598735087 hasConceptScore W1598735087C206844423 @default.
- W1598735087 hasConceptScore W1598735087C24326235 @default.
- W1598735087 hasConceptScore W1598735087C2777718760 @default.
- W1598735087 hasConceptScore W1598735087C2780033567 @default.
- W1598735087 hasConceptScore W1598735087C28843909 @default.
- W1598735087 hasConceptScore W1598735087C2909720056 @default.
- W1598735087 hasConceptScore W1598735087C33923547 @default.
- W1598735087 hasConceptScore W1598735087C40308292 @default.
- W1598735087 hasConceptScore W1598735087C41008148 @default.
- W1598735087 hasConceptScore W1598735087C5917680 @default.
- W1598735087 hasConceptScore W1598735087C62520636 @default.
- W1598735087 hasConceptScore W1598735087C74650414 @default.
- W1598735087 hasConceptScore W1598735087C75302062 @default.
- W1598735087 hasLocation W15987350871 @default.
- W1598735087 hasOpenAccess W1598735087 @default.
- W1598735087 hasPrimaryLocation W15987350871 @default.
- W1598735087 hasRelatedWork W1508107655 @default.
- W1598735087 hasRelatedWork W1544051557 @default.
- W1598735087 hasRelatedWork W1969972974 @default.
- W1598735087 hasRelatedWork W2013328632 @default.
- W1598735087 hasRelatedWork W2071745584 @default.
- W1598735087 hasRelatedWork W2099325426 @default.