Matches in SemOpenAlex for { <https://semopenalex.org/work/W1599313488> ?p ?o ?g. }
- W1599313488 abstract "The design and analysis of complexity-reducedrepresentations for multivariate data is important in manyscientific and engineering domains. This thesis explores suchrepresentations from two different perspectives: deriving andanalyzing performance measures for learning tree-structuredgraphical models and salient feature subset selection fordiscrimination. Graphical models have proven to be a flexible classof probabilistic models for approximating high-dimensional data.Learning the structure of such models from data is an importantgeneric task. It is known that if the data are drawn fromtree-structured distributions, then the algorithm of Chow and Liu(1968) provides an efficient algorithm for finding the tree thatmaximizes the likelihood of the data. We leverage this algorithmand the theory of large deviations to derive the error exponent ofstructure learning for discrete and Gaussian graphical models. Wedetermine the extremal tree structures for learning, that is, thestructures that lead to the highest and lowest exponents. We provethat the star minimizes the exponent and the chain maximizes theexponent, which means that among all unlabeled trees, the star andthe chain are the worst and best for learning respectively. Theanalysis is also extended to learning foreststructured graphicalmodels by augmenting the Chow-Liu algorithm with a thresholdingprocedure. We prove scaling laws on the number of samples and thenumber variables for structure learning to remain consistent inhigh-dimensions. The next part of the thesis is concerned withdiscrimination. We design computationally efficient tree-basedalgorithms to learn pairs of distributions that are specificallyadapted to the task of discrimination and show that they performwell on various datasets vis-`a-vis existing tree-based algorithms.We define the notion of a salient set for discrimination usinginformation-theoretic quantities and derive scaling laws on thenumber of samples so that the salient set can be recoveredasymptotically." @default.
- W1599313488 created "2016-06-24" @default.
- W1599313488 creator A5058345431 @default.
- W1599313488 date "2011-01-01" @default.
- W1599313488 modified "2023-09-24" @default.
- W1599313488 title "Large-deviation analysis and applications Of learning tree-structured graphical models" @default.
- W1599313488 cites W114565888 @default.
- W1599313488 cites W1479863711 @default.
- W1599313488 cites W148564650 @default.
- W1599313488 cites W1490760466 @default.
- W1599313488 cites W1494413412 @default.
- W1599313488 cites W1513861746 @default.
- W1599313488 cites W1516358642 @default.
- W1599313488 cites W1520053542 @default.
- W1599313488 cites W1525535255 @default.
- W1599313488 cites W1535430927 @default.
- W1599313488 cites W1536252645 @default.
- W1599313488 cites W1538452572 @default.
- W1599313488 cites W1538776335 @default.
- W1599313488 cites W1540371141 @default.
- W1599313488 cites W1543495496 @default.
- W1599313488 cites W1549664537 @default.
- W1599313488 cites W1554663460 @default.
- W1599313488 cites W1554944419 @default.
- W1599313488 cites W1573082642 @default.
- W1599313488 cites W1576267150 @default.
- W1599313488 cites W1588238406 @default.
- W1599313488 cites W1606478374 @default.
- W1599313488 cites W1647170118 @default.
- W1599313488 cites W1651266332 @default.
- W1599313488 cites W1663973292 @default.
- W1599313488 cites W1735349781 @default.
- W1599313488 cites W1746680969 @default.
- W1599313488 cites W1817561967 @default.
- W1599313488 cites W1846857138 @default.
- W1599313488 cites W1849729440 @default.
- W1599313488 cites W1881594620 @default.
- W1599313488 cites W1916337001 @default.
- W1599313488 cites W1963871118 @default.
- W1599313488 cites W1964087506 @default.
- W1599313488 cites W1965555277 @default.
- W1599313488 cites W1965680834 @default.
- W1599313488 cites W1966280301 @default.
- W1599313488 cites W1976019979 @default.
- W1599313488 cites W1976222519 @default.
- W1599313488 cites W1978909760 @default.
- W1599313488 cites W1979932453 @default.
- W1599313488 cites W1980452149 @default.
- W1599313488 cites W1982027625 @default.
- W1599313488 cites W1986872461 @default.
- W1599313488 cites W1988790447 @default.
- W1599313488 cites W1989065278 @default.
- W1599313488 cites W1991315500 @default.
- W1599313488 cites W1995875735 @default.
- W1599313488 cites W1997864710 @default.
- W1599313488 cites W1999805402 @default.
- W1599313488 cites W2000416469 @default.
- W1599313488 cites W2001141328 @default.
- W1599313488 cites W2008056655 @default.
- W1599313488 cites W2009570821 @default.
- W1599313488 cites W2010161926 @default.
- W1599313488 cites W2012575779 @default.
- W1599313488 cites W2013517650 @default.
- W1599313488 cites W2017927472 @default.
- W1599313488 cites W2018961610 @default.
- W1599313488 cites W2020428052 @default.
- W1599313488 cites W2023933519 @default.
- W1599313488 cites W2024046085 @default.
- W1599313488 cites W2031263531 @default.
- W1599313488 cites W2032210760 @default.
- W1599313488 cites W2034274945 @default.
- W1599313488 cites W2034489173 @default.
- W1599313488 cites W2037570051 @default.
- W1599313488 cites W2040870580 @default.
- W1599313488 cites W2041404167 @default.
- W1599313488 cites W2042587503 @default.
- W1599313488 cites W2044600950 @default.
- W1599313488 cites W2045638068 @default.
- W1599313488 cites W2049633694 @default.
- W1599313488 cites W2050297026 @default.
- W1599313488 cites W2053186076 @default.
- W1599313488 cites W2053807426 @default.
- W1599313488 cites W2054358802 @default.
- W1599313488 cites W2055309977 @default.
- W1599313488 cites W2059120410 @default.
- W1599313488 cites W2061248288 @default.
- W1599313488 cites W2066327035 @default.
- W1599313488 cites W2067885219 @default.
- W1599313488 cites W2068028167 @default.
- W1599313488 cites W2069245597 @default.
- W1599313488 cites W2080828514 @default.
- W1599313488 cites W2083042895 @default.
- W1599313488 cites W2084121713 @default.
- W1599313488 cites W2084812512 @default.
- W1599313488 cites W2095062316 @default.
- W1599313488 cites W2096222410 @default.
- W1599313488 cites W2096920988 @default.
- W1599313488 cites W2097182131 @default.
- W1599313488 cites W2097230740 @default.
- W1599313488 cites W2097415784 @default.