Matches in SemOpenAlex for { <https://semopenalex.org/work/W1599318880> ?p ?o ?g. }
- W1599318880 endingPage "65" @default.
- W1599318880 startingPage "49" @default.
- W1599318880 abstract "Key points The receptive field of most retinal ganglion cells consists of an excitatory centre and an inhibitory surround. In retinal ganglion cells of non‐primates the receptive field surround is provided by lateral inhibition in both the outer and the inner retinal synaptic layers. We use whole cell recording methods to establish the spatial organisation of excitatory and inhibitory synaptic inputs onto ganglion cells in primate retina. We confirm centre–surround organisation in the excitatory inputs to ganglion cells, and show further that inhibitory inputs can also show centre–surround organisation. We show that lateral inhibition in the inner retina shapes the spatial profile of both excitatory and inhibitory synaptic inputs onto ganglion cells. Dynamic clamp experiments provide evidence that reduction of inner retinal inhibition reduces spatial tuning in ganglion cell output. These results show that lateral inhibition in the inner retina of primate shapes the analysis of spatial form and contrast. Abstract The centre–surround organisation of receptive fields is a feature of most retinal ganglion cells (RGCs) and is critical for spatial discrimination and contrast detection. Although lateral inhibitory processes are known to be important in generating the receptive field surround, the contribution of each of the two synaptic layers in the primate retina remains unclear. Here we studied the spatial organisation of excitatory and inhibitory synaptic inputs onto ON and OFF ganglion cells in the primate retina. All RGCs showed an increase in excitation in response to stimulus of preferred polarity. Inhibition onto RGCs comprised two types of responses to preferred polarity: some RGCs showed an increase in inhibition whilst others showed removal of tonic inhibition. Excitatory inputs were strongly spatially tuned but inhibitory inputs showed more variable organisation: in some neurons they were as strongly tuned as excitation, and in others inhibitory inputs showed no spatial tuning. We targeted one source of inner retinal inhibition by functionally ablating spiking amacrine cells with bath application of tetrodotoxin (TTX). TTX significantly reduced the spatial tuning of excitatory inputs. In addition, TTX reduced inhibition onto those RGCs where a stimulus of preferred polarity increased inhibition. Reconstruction of the spatial tuning properties by somatic injection of excitatory and inhibitory synaptic conductances verified that TTX‐mediated inhibition onto bipolar cells increases the strength of the surround in RGC spiking output. These results indicate that in the primate retina inhibitory mechanisms in the inner plexiform layer sharpen the spatial tuning of ganglion cells." @default.
- W1599318880 created "2016-06-24" @default.
- W1599318880 creator A5016281343 @default.
- W1599318880 creator A5021565673 @default.
- W1599318880 creator A5022996741 @default.
- W1599318880 creator A5061948021 @default.
- W1599318880 creator A5070883099 @default.
- W1599318880 creator A5078446179 @default.
- W1599318880 date "2013-10-23" @default.
- W1599318880 modified "2023-10-16" @default.
- W1599318880 title "Inner retinal inhibition shapes the receptive field of retinal ganglion cells in primate" @default.
- W1599318880 cites W1507855610 @default.
- W1599318880 cites W1518435289 @default.
- W1599318880 cites W1536858825 @default.
- W1599318880 cites W1555852936 @default.
- W1599318880 cites W1585415456 @default.
- W1599318880 cites W1612963976 @default.
- W1599318880 cites W1770930219 @default.
- W1599318880 cites W1963921674 @default.
- W1599318880 cites W1965390170 @default.
- W1599318880 cites W1965673217 @default.
- W1599318880 cites W1966307555 @default.
- W1599318880 cites W1968266898 @default.
- W1599318880 cites W1968661899 @default.
- W1599318880 cites W1970041396 @default.
- W1599318880 cites W1975363648 @default.
- W1599318880 cites W1982641473 @default.
- W1599318880 cites W1984579614 @default.
- W1599318880 cites W1988849438 @default.
- W1599318880 cites W1997438424 @default.
- W1599318880 cites W2002663411 @default.
- W1599318880 cites W2005221642 @default.
- W1599318880 cites W2019990453 @default.
- W1599318880 cites W2021079169 @default.
- W1599318880 cites W2026960446 @default.
- W1599318880 cites W2031075659 @default.
- W1599318880 cites W2034535892 @default.
- W1599318880 cites W2038334426 @default.
- W1599318880 cites W2046134697 @default.
- W1599318880 cites W2046297486 @default.
- W1599318880 cites W2051185231 @default.
- W1599318880 cites W2051476226 @default.
- W1599318880 cites W2056356727 @default.
- W1599318880 cites W2057782586 @default.
- W1599318880 cites W2068314360 @default.
- W1599318880 cites W2071567206 @default.
- W1599318880 cites W2074897516 @default.
- W1599318880 cites W2074970589 @default.
- W1599318880 cites W2081066886 @default.
- W1599318880 cites W2084063329 @default.
- W1599318880 cites W2086140762 @default.
- W1599318880 cites W2088931889 @default.
- W1599318880 cites W2090651497 @default.
- W1599318880 cites W2091241526 @default.
- W1599318880 cites W2099126119 @default.
- W1599318880 cites W2105623061 @default.
- W1599318880 cites W2108904897 @default.
- W1599318880 cites W2115441910 @default.
- W1599318880 cites W2115562288 @default.
- W1599318880 cites W2116883773 @default.
- W1599318880 cites W2119051861 @default.
- W1599318880 cites W2120123765 @default.
- W1599318880 cites W2120428149 @default.
- W1599318880 cites W2124383883 @default.
- W1599318880 cites W2126695664 @default.
- W1599318880 cites W2126719084 @default.
- W1599318880 cites W2146116342 @default.
- W1599318880 cites W2329913331 @default.
- W1599318880 cites W2399668006 @default.
- W1599318880 doi "https://doi.org/10.1113/jphysiol.2013.257352" @default.
- W1599318880 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3903351" @default.
- W1599318880 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24042496" @default.
- W1599318880 hasPublicationYear "2013" @default.
- W1599318880 type Work @default.
- W1599318880 sameAs 1599318880 @default.
- W1599318880 citedByCount "26" @default.
- W1599318880 countsByYear W15993188802014 @default.
- W1599318880 countsByYear W15993188802015 @default.
- W1599318880 countsByYear W15993188802016 @default.
- W1599318880 countsByYear W15993188802017 @default.
- W1599318880 countsByYear W15993188802019 @default.
- W1599318880 countsByYear W15993188802020 @default.
- W1599318880 countsByYear W15993188802021 @default.
- W1599318880 countsByYear W15993188802022 @default.
- W1599318880 countsByYear W15993188802023 @default.
- W1599318880 crossrefType "journal-article" @default.
- W1599318880 hasAuthorship W1599318880A5016281343 @default.
- W1599318880 hasAuthorship W1599318880A5021565673 @default.
- W1599318880 hasAuthorship W1599318880A5022996741 @default.
- W1599318880 hasAuthorship W1599318880A5061948021 @default.
- W1599318880 hasAuthorship W1599318880A5070883099 @default.
- W1599318880 hasAuthorship W1599318880A5078446179 @default.
- W1599318880 hasBestOaLocation W15993188802 @default.
- W1599318880 hasConcept C105702510 @default.
- W1599318880 hasConcept C112592302 @default.
- W1599318880 hasConcept C133529732 @default.
- W1599318880 hasConcept C169760540 @default.
- W1599318880 hasConcept C17077164 @default.