Matches in SemOpenAlex for { <https://semopenalex.org/work/W1599686491> ?p ?o ?g. }
- W1599686491 endingPage "173" @default.
- W1599686491 startingPage "159" @default.
- W1599686491 abstract "The task of detecting the interest points in 3D meshes has typically been handled by geometric methods. These methods, while designed according to human preference, can be ill-equipped for handling the variety and subjectivity in human responses. Different tasks have different requirements for interest point detection; some tasks may necessitate high precision while other tasks may require high recall. Sometimes points with high curvature may be desirable, while in other cases high curvature may be an indication of noise. Geometric methods lack the required flexibility to adapt to such changes. As a consequence, interest point detection seems to be well suited for machine learning methods that can be trained to match the criteria applied on the annotated training data. In this paper, we formulate interest point detection as a supervised binary classification problem using a random forest as our classifier. We validate the accuracy of our method and compare our results to those of five state of the art methods on a new, standard benchmark." @default.
- W1599686491 created "2016-06-24" @default.
- W1599686491 creator A5024073593 @default.
- W1599686491 creator A5049816112 @default.
- W1599686491 date "2014-01-01" @default.
- W1599686491 modified "2023-09-23" @default.
- W1599686491 title "3D Interest Point Detection via Discriminative Learning" @default.
- W1599686491 cites W1482825550 @default.
- W1599686491 cites W1564871316 @default.
- W1599686491 cites W1581336677 @default.
- W1599686491 cites W172235910 @default.
- W1599686491 cites W2002552324 @default.
- W1599686491 cites W2010209818 @default.
- W1599686491 cites W2020682184 @default.
- W1599686491 cites W2031489346 @default.
- W1599686491 cites W2031878977 @default.
- W1599686491 cites W2063513338 @default.
- W1599686491 cites W2072492023 @default.
- W1599686491 cites W2087642411 @default.
- W1599686491 cites W2099606917 @default.
- W1599686491 cites W2099907898 @default.
- W1599686491 cites W2100657858 @default.
- W1599686491 cites W2107216992 @default.
- W1599686491 cites W2108337347 @default.
- W1599686491 cites W2111308925 @default.
- W1599686491 cites W2117183049 @default.
- W1599686491 cites W2136020167 @default.
- W1599686491 cites W2151103935 @default.
- W1599686491 cites W2160821342 @default.
- W1599686491 cites W2161253909 @default.
- W1599686491 cites W2295382923 @default.
- W1599686491 cites W2911964244 @default.
- W1599686491 cites W3102713731 @default.
- W1599686491 cites W4293171766 @default.
- W1599686491 doi "https://doi.org/10.1007/978-3-319-10590-1_11" @default.
- W1599686491 hasPublicationYear "2014" @default.
- W1599686491 type Work @default.
- W1599686491 sameAs 1599686491 @default.
- W1599686491 citedByCount "22" @default.
- W1599686491 countsByYear W15996864912015 @default.
- W1599686491 countsByYear W15996864912016 @default.
- W1599686491 countsByYear W15996864912017 @default.
- W1599686491 countsByYear W15996864912018 @default.
- W1599686491 countsByYear W15996864912019 @default.
- W1599686491 countsByYear W15996864912020 @default.
- W1599686491 countsByYear W15996864912021 @default.
- W1599686491 countsByYear W15996864912022 @default.
- W1599686491 countsByYear W15996864912023 @default.
- W1599686491 crossrefType "book-chapter" @default.
- W1599686491 hasAuthorship W1599686491A5024073593 @default.
- W1599686491 hasAuthorship W1599686491A5049816112 @default.
- W1599686491 hasBestOaLocation W15996864911 @default.
- W1599686491 hasConcept C115961682 @default.
- W1599686491 hasConcept C119857082 @default.
- W1599686491 hasConcept C12267149 @default.
- W1599686491 hasConcept C13280743 @default.
- W1599686491 hasConcept C150140777 @default.
- W1599686491 hasConcept C153180895 @default.
- W1599686491 hasConcept C154945302 @default.
- W1599686491 hasConcept C185798385 @default.
- W1599686491 hasConcept C193536780 @default.
- W1599686491 hasConcept C205649164 @default.
- W1599686491 hasConcept C38785706 @default.
- W1599686491 hasConcept C41008148 @default.
- W1599686491 hasConcept C66905080 @default.
- W1599686491 hasConcept C9417928 @default.
- W1599686491 hasConcept C95623464 @default.
- W1599686491 hasConcept C97931131 @default.
- W1599686491 hasConceptScore W1599686491C115961682 @default.
- W1599686491 hasConceptScore W1599686491C119857082 @default.
- W1599686491 hasConceptScore W1599686491C12267149 @default.
- W1599686491 hasConceptScore W1599686491C13280743 @default.
- W1599686491 hasConceptScore W1599686491C150140777 @default.
- W1599686491 hasConceptScore W1599686491C153180895 @default.
- W1599686491 hasConceptScore W1599686491C154945302 @default.
- W1599686491 hasConceptScore W1599686491C185798385 @default.
- W1599686491 hasConceptScore W1599686491C193536780 @default.
- W1599686491 hasConceptScore W1599686491C205649164 @default.
- W1599686491 hasConceptScore W1599686491C38785706 @default.
- W1599686491 hasConceptScore W1599686491C41008148 @default.
- W1599686491 hasConceptScore W1599686491C66905080 @default.
- W1599686491 hasConceptScore W1599686491C9417928 @default.
- W1599686491 hasConceptScore W1599686491C95623464 @default.
- W1599686491 hasConceptScore W1599686491C97931131 @default.
- W1599686491 hasLocation W15996864911 @default.
- W1599686491 hasLocation W15996864912 @default.
- W1599686491 hasLocation W15996864913 @default.
- W1599686491 hasOpenAccess W1599686491 @default.
- W1599686491 hasPrimaryLocation W15996864911 @default.
- W1599686491 hasRelatedWork W2088804257 @default.
- W1599686491 hasRelatedWork W2109986327 @default.
- W1599686491 hasRelatedWork W2112343299 @default.
- W1599686491 hasRelatedWork W2126344710 @default.
- W1599686491 hasRelatedWork W2170989130 @default.
- W1599686491 hasRelatedWork W2275058042 @default.
- W1599686491 hasRelatedWork W2905846897 @default.
- W1599686491 hasRelatedWork W3107721644 @default.
- W1599686491 hasRelatedWork W4221015625 @default.