Matches in SemOpenAlex for { <https://semopenalex.org/work/W1599689225> ?p ?o ?g. }
- W1599689225 abstract "In this thesis I present a framework for recognizing American Sign Language (ASL) from 3D data. The goal is to develop approaches that will scale well with increasing vocabulary sizes. Scalability is a major concern, because the computational treatment of ASL is a very complex undertaking. Two points particularly stand out: First, ASL is a highly inflected language, resulting in too many appearances of inflectional variants to model them all separately. Second, in ASL events occur both sequentially and simultaneously. Unlike speech recognition, ASL recognition cannot consider all possible combinations of simultaneous events explicitly, because of their sheer number. As a result, the computational treatment of ASL is much more complex than the computational treatment of spoken languages. Reducing the complexity of the task requires a two-pronged approach, which encompasses work on both the modeling and the computational sides. On the modeling side, I tackle the many appearances by breaking the signs down into their constituent phonemes, which are limited in number. I use the Movement-Hold phonological model for ASL as a guideline, and extend the parts of it that are not directly applicable to recognition systems. In addition, I recast it to describe simultaneous events in independent channels, so that it is no longer necessary to consider all their possible combinations. The result is a significant reduction of the modeling complexity. On the recognition side, I pose parallel hidden Markov models (PaHMMs) as an extension to conventional hidden Markov models. I develop a PaHMM recognition algorithm specifically geared toward the properties of sign languages. PaHMMs are the computational counterpart to modeling simultaneous events in independent channels, and allow putting them together on the fly at recognition time, instead of having to consider them a-priori. I validate the modeling approach and the PaHMM recognition algorithm in a pilot study with experiments on 53-sign and 22-sign data sets. In the PaHMM experiments, the independent channels consist of the hand movements of both hands, and the handshape of the strong hand. The results demonstrate the viability of both the phoneme modeling and the description of simultaneous events in independent channels." @default.
- W1599689225 created "2016-06-24" @default.
- W1599689225 creator A5016677245 @default.
- W1599689225 creator A5064437234 @default.
- W1599689225 date "2003-01-01" @default.
- W1599689225 modified "2023-09-26" @default.
- W1599689225 title "American sign language recognition: reducing the complexity of the task with phoneme-based modeling and parallel hidden markov models" @default.
- W1599689225 cites W147231108 @default.
- W1599689225 cites W1485582184 @default.
- W1599689225 cites W1490721004 @default.
- W1599689225 cites W1491531414 @default.
- W1599689225 cites W1497212834 @default.
- W1599689225 cites W1538046487 @default.
- W1599689225 cites W1539631312 @default.
- W1599689225 cites W1542117797 @default.
- W1599689225 cites W1554450038 @default.
- W1599689225 cites W1559751073 @default.
- W1599689225 cites W1560013842 @default.
- W1599689225 cites W1584312054 @default.
- W1599689225 cites W1595932190 @default.
- W1599689225 cites W1602553459 @default.
- W1599689225 cites W1639784222 @default.
- W1599689225 cites W173260203 @default.
- W1599689225 cites W1747251355 @default.
- W1599689225 cites W1793695472 @default.
- W1599689225 cites W1965498301 @default.
- W1599689225 cites W1977434607 @default.
- W1599689225 cites W1980502471 @default.
- W1599689225 cites W1980865973 @default.
- W1599689225 cites W2000507388 @default.
- W1599689225 cites W2017472655 @default.
- W1599689225 cites W2046002001 @default.
- W1599689225 cites W2077570953 @default.
- W1599689225 cites W2097501508 @default.
- W1599689225 cites W2097897204 @default.
- W1599689225 cites W2099184405 @default.
- W1599689225 cites W2101328420 @default.
- W1599689225 cites W2102156576 @default.
- W1599689225 cites W2102874665 @default.
- W1599689225 cites W2108673563 @default.
- W1599689225 cites W2110640136 @default.
- W1599689225 cites W2111459438 @default.
- W1599689225 cites W2118163921 @default.
- W1599689225 cites W2118244636 @default.
- W1599689225 cites W2118904746 @default.
- W1599689225 cites W2125834953 @default.
- W1599689225 cites W2125838338 @default.
- W1599689225 cites W2126698653 @default.
- W1599689225 cites W2131472500 @default.
- W1599689225 cites W2136746027 @default.
- W1599689225 cites W2137806997 @default.
- W1599689225 cites W2146057810 @default.
- W1599689225 cites W2146221819 @default.
- W1599689225 cites W2147289866 @default.
- W1599689225 cites W2151541857 @default.
- W1599689225 cites W2152239535 @default.
- W1599689225 cites W2152716832 @default.
- W1599689225 cites W2155863284 @default.
- W1599689225 cites W2157548127 @default.
- W1599689225 cites W2158791054 @default.
- W1599689225 cites W2171155203 @default.
- W1599689225 cites W2179117700 @default.
- W1599689225 cites W2542163750 @default.
- W1599689225 cites W36957564 @default.
- W1599689225 cites W60275353 @default.
- W1599689225 cites W2464169773 @default.
- W1599689225 hasPublicationYear "2003" @default.
- W1599689225 type Work @default.
- W1599689225 sameAs 1599689225 @default.
- W1599689225 citedByCount "17" @default.
- W1599689225 countsByYear W15996892252012 @default.
- W1599689225 countsByYear W15996892252013 @default.
- W1599689225 countsByYear W15996892252014 @default.
- W1599689225 countsByYear W15996892252015 @default.
- W1599689225 crossrefType "journal-article" @default.
- W1599689225 hasAuthorship W1599689225A5016677245 @default.
- W1599689225 hasAuthorship W1599689225A5064437234 @default.
- W1599689225 hasConcept C11413529 @default.
- W1599689225 hasConcept C134306372 @default.
- W1599689225 hasConcept C137293760 @default.
- W1599689225 hasConcept C138885662 @default.
- W1599689225 hasConcept C139676723 @default.
- W1599689225 hasConcept C154945302 @default.
- W1599689225 hasConcept C162324750 @default.
- W1599689225 hasConcept C179799912 @default.
- W1599689225 hasConcept C187736073 @default.
- W1599689225 hasConcept C204321447 @default.
- W1599689225 hasConcept C23224414 @default.
- W1599689225 hasConcept C2776737515 @default.
- W1599689225 hasConcept C2777601683 @default.
- W1599689225 hasConcept C2780451532 @default.
- W1599689225 hasConcept C28490314 @default.
- W1599689225 hasConcept C33923547 @default.
- W1599689225 hasConcept C41008148 @default.
- W1599689225 hasConcept C41895202 @default.
- W1599689225 hasConcept C48044578 @default.
- W1599689225 hasConcept C522192633 @default.
- W1599689225 hasConcept C77088390 @default.
- W1599689225 hasConceptScore W1599689225C11413529 @default.
- W1599689225 hasConceptScore W1599689225C134306372 @default.