Matches in SemOpenAlex for { <https://semopenalex.org/work/W1599719704> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W1599719704 abstract "How a company schedules its production activities can have a significant effect on its ability to meet its objectives including on-time delivery and machine utilization. To schedule such complex facilities we propose a genetic algorithm approach that is applicable to a wide range of scheduling problems. Genetic algorithms mimic the survival of the fittest paradigm from evolutionary biology. This particular genetic algorithm utilizes the random keys encoding which uses random variates distributed between zero and one to encode the problem. This genetic algorithm also utilizes a unique set of operators including: elitism, Bernoulli crossover, post tournament selection, real valued mutation, and immigration. This combination produces the random keys genetic algorithm which is quite different than other genetic algorithm approaches discussed in the literature.Initially, we apply the random keys genetic algorithm to some complex scheduling problems containing multiple, nonidentical machines, ready times, due times, sequence dependent setup times, tooling constraints, and the total tardiness objective. The random keys genetic algorithm proves to be effective, relative to other methods, for solving these problems. Further computational test results indicate the robust nature of the algorithm demonstrating its effectiveness for a number of other scheduling problems.We also introduce solution methodologies for the sequencing and scheduling of operations for parallel machine tools. Parallel machine tools are Computer Numerically Controlled metal working machines that have multiple spindles and multiple tooling heads which permit the simultaneous machining of one or multiple parts. The presence of simultaneous machining introduces complexities not typically found in scheduling problems and creates several new problem types. To handle these complexities, we propose two different heuristic solution methodologies. The first heuristic method utilizes priority dispatching rules that are modified to reflect the unique characteristics of parallel machine tools. The second heuristic method applies genetic algorithms to solve these problems. For the most difficult problem types we propose a hybrid genetic algorithm that utilizes both genetic algorithms and other operations research ideas. Computational testing indicates that both the dispatching rule and genetic algorithm methods find good solutions in a reasonable amount of computation time. For the most complicated problem variations the hybrid genetic algorithm yields the best performance." @default.
- W1599719704 created "2016-06-24" @default.
- W1599719704 creator A5041955346 @default.
- W1599719704 creator A5057843362 @default.
- W1599719704 date "1995-01-01" @default.
- W1599719704 modified "2023-09-24" @default.
- W1599719704 title "The random keys genetic algorithm for complex scheduling problems" @default.
- W1599719704 hasPublicationYear "1995" @default.
- W1599719704 type Work @default.
- W1599719704 sameAs 1599719704 @default.
- W1599719704 citedByCount "6" @default.
- W1599719704 crossrefType "dissertation" @default.
- W1599719704 hasAuthorship W1599719704A5041955346 @default.
- W1599719704 hasAuthorship W1599719704A5057843362 @default.
- W1599719704 hasConcept C111919701 @default.
- W1599719704 hasConcept C11413529 @default.
- W1599719704 hasConcept C119857082 @default.
- W1599719704 hasConcept C122507166 @default.
- W1599719704 hasConcept C126255220 @default.
- W1599719704 hasConcept C154945302 @default.
- W1599719704 hasConcept C206729178 @default.
- W1599719704 hasConcept C2778047078 @default.
- W1599719704 hasConcept C31689143 @default.
- W1599719704 hasConcept C33923547 @default.
- W1599719704 hasConcept C41008148 @default.
- W1599719704 hasConcept C55416958 @default.
- W1599719704 hasConcept C68387754 @default.
- W1599719704 hasConcept C8880873 @default.
- W1599719704 hasConceptScore W1599719704C111919701 @default.
- W1599719704 hasConceptScore W1599719704C11413529 @default.
- W1599719704 hasConceptScore W1599719704C119857082 @default.
- W1599719704 hasConceptScore W1599719704C122507166 @default.
- W1599719704 hasConceptScore W1599719704C126255220 @default.
- W1599719704 hasConceptScore W1599719704C154945302 @default.
- W1599719704 hasConceptScore W1599719704C206729178 @default.
- W1599719704 hasConceptScore W1599719704C2778047078 @default.
- W1599719704 hasConceptScore W1599719704C31689143 @default.
- W1599719704 hasConceptScore W1599719704C33923547 @default.
- W1599719704 hasConceptScore W1599719704C41008148 @default.
- W1599719704 hasConceptScore W1599719704C55416958 @default.
- W1599719704 hasConceptScore W1599719704C68387754 @default.
- W1599719704 hasConceptScore W1599719704C8880873 @default.
- W1599719704 hasLocation W15997197041 @default.
- W1599719704 hasOpenAccess W1599719704 @default.
- W1599719704 hasPrimaryLocation W15997197041 @default.
- W1599719704 hasRelatedWork W1497256448 @default.
- W1599719704 hasRelatedWork W1979928555 @default.
- W1599719704 hasRelatedWork W2060331334 @default.
- W1599719704 hasRelatedWork W2142183404 @default.
- W1599719704 hasRelatedWork W2154352383 @default.
- W1599719704 hasRelatedWork W2168079536 @default.
- W1599719704 hasRelatedWork W2200909367 @default.
- W1599719704 hasRelatedWork W2326131726 @default.
- W1599719704 hasRelatedWork W2529449823 @default.
- W1599719704 hasRelatedWork W2602822439 @default.
- W1599719704 hasRelatedWork W2614592567 @default.
- W1599719704 hasRelatedWork W2888026291 @default.
- W1599719704 hasRelatedWork W2897304412 @default.
- W1599719704 hasRelatedWork W2985086102 @default.
- W1599719704 hasRelatedWork W3098326450 @default.
- W1599719704 hasRelatedWork W3120290080 @default.
- W1599719704 hasRelatedWork W3122162113 @default.
- W1599719704 hasRelatedWork W3134529059 @default.
- W1599719704 hasRelatedWork W3180099230 @default.
- W1599719704 hasRelatedWork W3185469365 @default.
- W1599719704 isParatext "false" @default.
- W1599719704 isRetracted "false" @default.
- W1599719704 magId "1599719704" @default.
- W1599719704 workType "dissertation" @default.