Matches in SemOpenAlex for { <https://semopenalex.org/work/W1600569265> ?p ?o ?g. }
- W1600569265 endingPage "337" @default.
- W1600569265 startingPage "326" @default.
- W1600569265 abstract "ABSTRACT Wheat-flour dough is a viscoelastic material with nonlinear rheological behavior. Extensograph is a useful system for dough rheological measurement. Our purpose in this research was to apply soft computation tools for predicting the extensograph properties of dough from several physicochemical properties of flour. This study used the resulting model to suggest modifications of processing conditions for reducing economic loss and minimizing product quality deterioration. A generalized feed-forward artificial neural network (ANN) with a back-propagation learning algorithm was employed to estimate the extensograph properties of dough. Trial and error and genetic algorithm (GA) were applied in the training phase for developing an ANN with an optimized structure. Developed ANN using GA has excellent potential for predicting the extensograph properties of dough. Sensitivity analyses were conducted to explore the ability of inputs in predicting the extensograph properties of dough. Results showed gluten index was the most sensitive input in dough extensograph characterizations. PRACTICAL APPLICATIONS Extensograph is a suitable instrument for measuring the stretching properties of dough to make reliable statements about the baking behavior of the wheat-flour dough in practical industrial applications and in research. Rheological measurements of each batch in the production line are very useful and make online and in-time process adjustments possible, but this is usually impractical in an industrial setting. Therefore, accurate prediction of dough rheology could provide many benefits to the baking industry for satisfying consumer demands. In the current study, genetic algorithm-neural network approach was applied to predict extensograph properties of dough as affected by physicochemical properties of flour. In comparison with trial and error, genetic algorithm can determine an artificial neural network's topology and inputs in less time with excellent performance in prediction. According to the results of sensitivity analyses, of the seven investigated inputs, changes in gluten index have the most effect on estimating extensograph properties of dough." @default.
- W1600569265 created "2016-06-24" @default.
- W1600569265 creator A5001205049 @default.
- W1600569265 creator A5001350103 @default.
- W1600569265 creator A5044286479 @default.
- W1600569265 creator A5047270222 @default.
- W1600569265 creator A5048675934 @default.
- W1600569265 creator A5082517637 @default.
- W1600569265 date "2012-05-28" @default.
- W1600569265 modified "2023-10-03" @default.
- W1600569265 title "PREDICTION OF EXTENSOGRAPH PROPERTIES OF WHEAT-FLOUR DOUGH: ARTIFICIAL NEURAL NETWORKS AND A GENETIC ALGORITHM APPROACH" @default.
- W1600569265 cites W1505556655 @default.
- W1600569265 cites W1546791837 @default.
- W1600569265 cites W1964080429 @default.
- W1600569265 cites W1966245059 @default.
- W1600569265 cites W1969334115 @default.
- W1600569265 cites W1971627922 @default.
- W1600569265 cites W1977107461 @default.
- W1600569265 cites W1977932221 @default.
- W1600569265 cites W1978733879 @default.
- W1600569265 cites W1980998330 @default.
- W1600569265 cites W1981029206 @default.
- W1600569265 cites W1984002953 @default.
- W1600569265 cites W1992067818 @default.
- W1600569265 cites W1992162919 @default.
- W1600569265 cites W1992374350 @default.
- W1600569265 cites W1996807874 @default.
- W1600569265 cites W1999869786 @default.
- W1600569265 cites W2001129580 @default.
- W1600569265 cites W2006125852 @default.
- W1600569265 cites W2014065015 @default.
- W1600569265 cites W2022537594 @default.
- W1600569265 cites W2028070629 @default.
- W1600569265 cites W2037389717 @default.
- W1600569265 cites W2039179285 @default.
- W1600569265 cites W2040908315 @default.
- W1600569265 cites W2056185623 @default.
- W1600569265 cites W2056808208 @default.
- W1600569265 cites W2064087909 @default.
- W1600569265 cites W2070510912 @default.
- W1600569265 cites W2080399860 @default.
- W1600569265 cites W2080913375 @default.
- W1600569265 cites W2089606897 @default.
- W1600569265 cites W2094327120 @default.
- W1600569265 cites W2126597532 @default.
- W1600569265 cites W2128890213 @default.
- W1600569265 cites W2130708993 @default.
- W1600569265 cites W2134281019 @default.
- W1600569265 cites W2152779201 @default.
- W1600569265 cites W2160438060 @default.
- W1600569265 cites W2165440824 @default.
- W1600569265 cites W2168283810 @default.
- W1600569265 cites W2172044679 @default.
- W1600569265 cites W2463700910 @default.
- W1600569265 doi "https://doi.org/10.1111/j.1745-4603.2011.00342.x" @default.
- W1600569265 hasPublicationYear "2012" @default.
- W1600569265 type Work @default.
- W1600569265 sameAs 1600569265 @default.
- W1600569265 citedByCount "14" @default.
- W1600569265 countsByYear W16005692652013 @default.
- W1600569265 countsByYear W16005692652015 @default.
- W1600569265 countsByYear W16005692652016 @default.
- W1600569265 countsByYear W16005692652017 @default.
- W1600569265 countsByYear W16005692652019 @default.
- W1600569265 countsByYear W16005692652020 @default.
- W1600569265 countsByYear W16005692652021 @default.
- W1600569265 countsByYear W16005692652022 @default.
- W1600569265 crossrefType "journal-article" @default.
- W1600569265 hasAuthorship W1600569265A5001205049 @default.
- W1600569265 hasAuthorship W1600569265A5001350103 @default.
- W1600569265 hasAuthorship W1600569265A5044286479 @default.
- W1600569265 hasAuthorship W1600569265A5047270222 @default.
- W1600569265 hasAuthorship W1600569265A5048675934 @default.
- W1600569265 hasAuthorship W1600569265A5082517637 @default.
- W1600569265 hasBestOaLocation W16005692651 @default.
- W1600569265 hasConcept C119857082 @default.
- W1600569265 hasConcept C159985019 @default.
- W1600569265 hasConcept C185592680 @default.
- W1600569265 hasConcept C192562407 @default.
- W1600569265 hasConcept C200990466 @default.
- W1600569265 hasConcept C3019985465 @default.
- W1600569265 hasConcept C31903555 @default.
- W1600569265 hasConcept C33923547 @default.
- W1600569265 hasConcept C41008148 @default.
- W1600569265 hasConcept C50644808 @default.
- W1600569265 hasConcept C8880873 @default.
- W1600569265 hasConceptScore W1600569265C119857082 @default.
- W1600569265 hasConceptScore W1600569265C159985019 @default.
- W1600569265 hasConceptScore W1600569265C185592680 @default.
- W1600569265 hasConceptScore W1600569265C192562407 @default.
- W1600569265 hasConceptScore W1600569265C200990466 @default.
- W1600569265 hasConceptScore W1600569265C3019985465 @default.
- W1600569265 hasConceptScore W1600569265C31903555 @default.
- W1600569265 hasConceptScore W1600569265C33923547 @default.
- W1600569265 hasConceptScore W1600569265C41008148 @default.
- W1600569265 hasConceptScore W1600569265C50644808 @default.
- W1600569265 hasConceptScore W1600569265C8880873 @default.
- W1600569265 hasIssue "4" @default.