Matches in SemOpenAlex for { <https://semopenalex.org/work/W1602842643> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W1602842643 abstract "Summary form only given. This tutorial provides practical information on two techniques that are of use to anyone doing statistical data analysis and making statistical inferences. Reliability engineers often base their decisions on fitting lifetime data to a particular type of distribution (e.g. lognormal, exponential, Weibull). Statistical bootstrapping is a tool that allows us to explore data and make useful inferences (e.g. mean, confidence intervals) about it without the need for assuming that the data is from a particular underlying distribution. Bootstrapping was introduced in the late 1970's and is a computationally intensive Monte-Carlo procedure that is simple to understand and implement. To bootstrap a statistic (e.g. the sample mean), we draw for example 1000 random resamples with replacement from the original sample data, calculate the statistic of interest (sample mean) for each resample, then estimate the overall sample mean by taking the average of all the 1000 resampled means. Inferences about our statistic can then be made by inspecting the resulting bootstrap distribution of our 1000 resampled values of the statistic of interest. The key idea here is that the bootstrap distribution approximates the sampling distribution of the statistic and we use it as a way to estimate the variation in a statistic based on the original data. The second topic of discussion in this tutorial was an introduction to extreme value statistics. Extreme values statistics have proven useful in ocean engineering (e.g. highest wave height), meteorology (highest amount of rainfall, maximum wind speed), and in investigating fatigue strength and corrosion. Here the focus was on the extremes of a measured parameter instead of the typical focus on centralized tendencies such as the mean or median. I believe that they could also prove useful in exploring electrical reliability issues such as the highest (lowest) use temperature for a metal line, maximum use current flow through a specific device, or the highest use voltage across a capacitor." @default.
- W1602842643 created "2016-06-24" @default.
- W1602842643 creator A5075927204 @default.
- W1602842643 date "2006-03-30" @default.
- W1602842643 modified "2023-09-27" @default.
- W1602842643 title "Reliability Engineering Tools: Bootstrapping and Extreme Value Statistics" @default.
- W1602842643 doi "https://doi.org/10.1109/irws.2005.1609588" @default.
- W1602842643 hasPublicationYear "2006" @default.
- W1602842643 type Work @default.
- W1602842643 sameAs 1602842643 @default.
- W1602842643 citedByCount "2" @default.
- W1602842643 countsByYear W16028426432016 @default.
- W1602842643 countsByYear W16028426432017 @default.
- W1602842643 crossrefType "proceedings-article" @default.
- W1602842643 hasAuthorship W1602842643A5075927204 @default.
- W1602842643 hasConcept C105795698 @default.
- W1602842643 hasConcept C129848803 @default.
- W1602842643 hasConcept C147581598 @default.
- W1602842643 hasConcept C149782125 @default.
- W1602842643 hasConcept C167723999 @default.
- W1602842643 hasConcept C169707849 @default.
- W1602842643 hasConcept C173291955 @default.
- W1602842643 hasConcept C207609745 @default.
- W1602842643 hasConcept C33923547 @default.
- W1602842643 hasConcept C41008148 @default.
- W1602842643 hasConcept C44082924 @default.
- W1602842643 hasConcept C89128539 @default.
- W1602842643 hasConceptScore W1602842643C105795698 @default.
- W1602842643 hasConceptScore W1602842643C129848803 @default.
- W1602842643 hasConceptScore W1602842643C147581598 @default.
- W1602842643 hasConceptScore W1602842643C149782125 @default.
- W1602842643 hasConceptScore W1602842643C167723999 @default.
- W1602842643 hasConceptScore W1602842643C169707849 @default.
- W1602842643 hasConceptScore W1602842643C173291955 @default.
- W1602842643 hasConceptScore W1602842643C207609745 @default.
- W1602842643 hasConceptScore W1602842643C33923547 @default.
- W1602842643 hasConceptScore W1602842643C41008148 @default.
- W1602842643 hasConceptScore W1602842643C44082924 @default.
- W1602842643 hasConceptScore W1602842643C89128539 @default.
- W1602842643 hasLocation W16028426431 @default.
- W1602842643 hasOpenAccess W1602842643 @default.
- W1602842643 hasPrimaryLocation W16028426431 @default.
- W1602842643 hasRelatedWork W1566558445 @default.
- W1602842643 hasRelatedWork W1730981672 @default.
- W1602842643 hasRelatedWork W2012211654 @default.
- W1602842643 hasRelatedWork W2104232660 @default.
- W1602842643 hasRelatedWork W2224349881 @default.
- W1602842643 hasRelatedWork W2313679961 @default.
- W1602842643 hasRelatedWork W2374901194 @default.
- W1602842643 hasRelatedWork W2596586555 @default.
- W1602842643 hasRelatedWork W3151969394 @default.
- W1602842643 hasRelatedWork W4212896015 @default.
- W1602842643 isParatext "false" @default.
- W1602842643 isRetracted "false" @default.
- W1602842643 magId "1602842643" @default.
- W1602842643 workType "article" @default.