Matches in SemOpenAlex for { <https://semopenalex.org/work/W1603275357> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W1603275357 abstract "Recently, neural-network-based adaptive control technique has attracted increasing attentions, because it has provided an efficient and effective way in the control of complex nonlinear or ill-defined systems (Duarte-Mermoud et al., 2005; Hsu et al., 2006; Lin and Hsu, 2003; Lin et al., 1999; Peng et al. 2004). The key elements of this success are the approximation capabilities of the neural networks. The parameterized neural networks can approximate the unknown system dynamics or the ideal tracking controller after learning. One must distinguish between two classes of control applications – open-loop identification and closed-loop feedback control. Identification applications are similar to signal processing/classification, so that the same open-loop algorithms may often be used. Therefore, a tremendous amount of training data must be used and considerable training time undertaken is required. On the other hand, in closed-loop feedback applications the neural network is inside the control loop, so that special steps must be taken to ensure that the tracking error and the neural network weights remain bounded in the closed-loop system. The basic issues in neural network closed-loop feedback control are to provide online learning algorithms that do not require preliminary off-line tuning. Some of these learning algorithms are based on the backpropagation algorithm. However, these approaches have difficulties to guarantee the stability and robustness of closed-loop system (Duarte-Mermoud et al., 2005; Lin et al., 1999). Another learning algorithms are based on the Lyapunov stability theorem. The tuning laws have been designed to guarantee the system stability in the Lyapunov sense (Hsu et al., 2006; Lin & Hsu, 2003; Peng et al., 2004). However, these neural networks are feedforward neural networks; they belong to static mapping networks. Without aid of tapped delay, a feedforward neural network is unable to represent a dynamic mapping. The recurrent neural network (RNN) has superior capabilities as compared to feedforward neural networks, such as their dynamic response and their information storing ability (Lee & Teng, 2000; Lin & Hsu, 2004). Since an RNN has an internal feedback loop, it captures the dynamic response of a system with external feedback through delays. Thus, an RNN is a dynamic mapping network. Due to its dynamic characteristic and relatively simple architecture, the recurrent neural network is a useful tool for most real-time applications (Lin & Chen, 2006; Lin & Hsu, 2004; Tian et al., 2004; Wai et al. 2004). Although the neural-network-based adaptive control performances are acceptable in above literatures; however, the learning algorithm only includes the parameter learning, and they O pe n A cc es s D at ab as e w w w .ite ch on lin e. co m" @default.
- W1603275357 created "2016-06-24" @default.
- W1603275357 creator A5067257724 @default.
- W1603275357 creator A5078836029 @default.
- W1603275357 date "2008-09-01" @default.
- W1603275357 modified "2023-09-25" @default.
- W1603275357 title "Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control" @default.
- W1603275357 cites W1487127700 @default.
- W1603275357 cites W1982285813 @default.
- W1603275357 cites W1983244368 @default.
- W1603275357 cites W2091156915 @default.
- W1603275357 cites W2094712571 @default.
- W1603275357 cites W2097488680 @default.
- W1603275357 cites W2104727184 @default.
- W1603275357 cites W2106693130 @default.
- W1603275357 cites W2109839764 @default.
- W1603275357 cites W2124189772 @default.
- W1603275357 cites W2131246644 @default.
- W1603275357 cites W2132414998 @default.
- W1603275357 cites W2133135175 @default.
- W1603275357 cites W2150414271 @default.
- W1603275357 cites W2154883150 @default.
- W1603275357 cites W2159769511 @default.
- W1603275357 cites W2160142892 @default.
- W1603275357 cites W2160192609 @default.
- W1603275357 cites W2161016474 @default.
- W1603275357 cites W2161445591 @default.
- W1603275357 cites W2162144003 @default.
- W1603275357 cites W2169990839 @default.
- W1603275357 cites W2548492807 @default.
- W1603275357 doi "https://doi.org/10.5772/5538" @default.
- W1603275357 hasPublicationYear "2008" @default.
- W1603275357 type Work @default.
- W1603275357 sameAs 1603275357 @default.
- W1603275357 citedByCount "1" @default.
- W1603275357 countsByYear W16032753572023 @default.
- W1603275357 crossrefType "book-chapter" @default.
- W1603275357 hasAuthorship W1603275357A5067257724 @default.
- W1603275357 hasAuthorship W1603275357A5078836029 @default.
- W1603275357 hasBestOaLocation W16032753571 @default.
- W1603275357 hasConcept C154945302 @default.
- W1603275357 hasConcept C15744967 @default.
- W1603275357 hasConcept C188147891 @default.
- W1603275357 hasConcept C2775924081 @default.
- W1603275357 hasConcept C41008148 @default.
- W1603275357 hasConcept C50644808 @default.
- W1603275357 hasConceptScore W1603275357C154945302 @default.
- W1603275357 hasConceptScore W1603275357C15744967 @default.
- W1603275357 hasConceptScore W1603275357C188147891 @default.
- W1603275357 hasConceptScore W1603275357C2775924081 @default.
- W1603275357 hasConceptScore W1603275357C41008148 @default.
- W1603275357 hasConceptScore W1603275357C50644808 @default.
- W1603275357 hasLocation W16032753571 @default.
- W1603275357 hasLocation W16032753572 @default.
- W1603275357 hasOpenAccess W1603275357 @default.
- W1603275357 hasPrimaryLocation W16032753571 @default.
- W1603275357 hasRelatedWork W1968338851 @default.
- W1603275357 hasRelatedWork W2159443810 @default.
- W1603275357 hasRelatedWork W2386387936 @default.
- W1603275357 hasRelatedWork W2748952813 @default.
- W1603275357 hasRelatedWork W2899084033 @default.
- W1603275357 hasRelatedWork W3001020386 @default.
- W1603275357 hasRelatedWork W3107474891 @default.
- W1603275357 hasRelatedWork W4362499384 @default.
- W1603275357 hasRelatedWork W644753246 @default.
- W1603275357 hasRelatedWork W1629725936 @default.
- W1603275357 isParatext "false" @default.
- W1603275357 isRetracted "false" @default.
- W1603275357 magId "1603275357" @default.
- W1603275357 workType "book-chapter" @default.