Matches in SemOpenAlex for { <https://semopenalex.org/work/W1604550862> ?p ?o ?g. }
- W1604550862 endingPage "296" @default.
- W1604550862 startingPage "287" @default.
- W1604550862 abstract "•Malaria control and elimination could be enhanced by targeting human-to-mosquito transmission of the parasite. •A better understanding of which individuals in endemic populations infect mosquito vectors would improve targeting. •Studies that directly assessed the human infectious reservoir of malaria using xenodiagnostic approaches are critiqued. •Future direct assessments of infectious reservoir should consider factors affecting transmission potential, longitudinal infectivity to mosquitoes, and exposure to vectors. Renewed interest in malaria eradication has placed greater emphasis on the development of tools to interrupt Plasmodium transmission, such as transmission-blocking vaccines. However, effective deployment of such tools is likely to depend on improving our understanding of which individuals transmit infections to mosquitoes. To date, only a handful of studies have directly determined the infectiousness of individuals in endemic populations. Here we review these studies and their relative merits. We also highlight factors influencing transmission potential that are not normally considered: the duration of human infectiousness, frequency of sampling by mosquitoes, and variation in vector competence among different mosquito populations. We argue that more comprehensive xenodiagnostic assessments of infectivity are necessary to accurately quantify the infectious reservoir and better target interventions. Renewed interest in malaria eradication has placed greater emphasis on the development of tools to interrupt Plasmodium transmission, such as transmission-blocking vaccines. However, effective deployment of such tools is likely to depend on improving our understanding of which individuals transmit infections to mosquitoes. To date, only a handful of studies have directly determined the infectiousness of individuals in endemic populations. Here we review these studies and their relative merits. We also highlight factors influencing transmission potential that are not normally considered: the duration of human infectiousness, frequency of sampling by mosquitoes, and variation in vector competence among different mosquito populations. We argue that more comprehensive xenodiagnostic assessments of infectivity are necessary to accurately quantify the infectious reservoir and better target interventions. arthropod behavior describing a preference for resting indoors after blood feeding. arthropod behavior describing preference for blood feeding outdoors. arthropod behavior describing preference for resting outdoors after blood feeding outdoors. the sexual stages of the malaria parasite capable of reproduction in the mosquito. Female and male gametocytes circulate in the human peripheral blood, where they may be ingested by blood-feeding Anopheles mosquitoes and begin sexual development. xenodiagnostic assays developed to determine the infectiousness of Plasmodium gametocytes to Anopheles mosquitoes. Mosquito feeding assay may refer to skin feeding assays, in which mosquitoes are allowed to feed directly on a subject's skin, to direct membrane feeding assays, in which mosquitoes feed on venous blood from a subject maintained at body temperature in a membrane feeding device, or to standard membrane feeding assays, in which mosquitoes feed on cultured gametocytes in a membrane-based feeder system. malaria transmission may be described as perennial where environmental and climatic conditions allow parasite transmission throughout the year. malaria transmission may be described as seasonal where mosquito biting and thus transmission are clustered temporally, generally occurring following predictable periods of rain and subsequently decreasing in periods of drought. the development of humoral immunity to antigens present during gametocyte development. Antibodies specific to gametocyte antigens may be ingested along with mature gametocytes during blood feeding. If these antibodies target proteins essential for parasite development (e.g., Pfs48/45, Pfs230) and are sufficiently abundant, antibody interaction can prevent parasite development and transmission potential is reduced or entirely blocked. There is a growing body of evidence for the development of transmission-blocking immunity in individuals naturally exposed to malaria infection. in this context, is a method to determine the infectiousness of a potentially parasitized host (i.e., malaria-infected humans) by allowing vectors (i.e., mosquitoes) to feed on the subject. Infectiousness is assessed by the infection status of the vector (i.e., mosquito) after a suitable period of parasite development." @default.
- W1604550862 created "2016-06-24" @default.
- W1604550862 creator A5008023495 @default.
- W1604550862 creator A5031912931 @default.
- W1604550862 creator A5036396443 @default.
- W1604550862 creator A5037076197 @default.
- W1604550862 date "2015-07-01" @default.
- W1604550862 modified "2023-09-29" @default.
- W1604550862 title "Assessing the infectious reservoir of falciparum malaria: past and future" @default.
- W1604550862 cites W106715878 @default.
- W1604550862 cites W1787098375 @default.
- W1604550862 cites W179247595 @default.
- W1604550862 cites W1812461290 @default.
- W1604550862 cites W1892619214 @default.
- W1604550862 cites W1922495425 @default.
- W1604550862 cites W1964121447 @default.
- W1604550862 cites W1965779658 @default.
- W1604550862 cites W1966459680 @default.
- W1604550862 cites W1980828256 @default.
- W1604550862 cites W1983619368 @default.
- W1604550862 cites W1992197009 @default.
- W1604550862 cites W2003147927 @default.
- W1604550862 cites W2007131573 @default.
- W1604550862 cites W2008234478 @default.
- W1604550862 cites W2010311098 @default.
- W1604550862 cites W2013529505 @default.
- W1604550862 cites W2013778175 @default.
- W1604550862 cites W2017092438 @default.
- W1604550862 cites W2026708814 @default.
- W1604550862 cites W2026784762 @default.
- W1604550862 cites W2028821141 @default.
- W1604550862 cites W2030287132 @default.
- W1604550862 cites W2041222442 @default.
- W1604550862 cites W2044493743 @default.
- W1604550862 cites W2051151083 @default.
- W1604550862 cites W2052292883 @default.
- W1604550862 cites W2054028505 @default.
- W1604550862 cites W2055811961 @default.
- W1604550862 cites W2059774362 @default.
- W1604550862 cites W2066641156 @default.
- W1604550862 cites W2067348220 @default.
- W1604550862 cites W2079703504 @default.
- W1604550862 cites W2080857330 @default.
- W1604550862 cites W2081607479 @default.
- W1604550862 cites W2085452251 @default.
- W1604550862 cites W2091490176 @default.
- W1604550862 cites W2092507703 @default.
- W1604550862 cites W2097193216 @default.
- W1604550862 cites W2102456788 @default.
- W1604550862 cites W2104335715 @default.
- W1604550862 cites W2105961162 @default.
- W1604550862 cites W2110387831 @default.
- W1604550862 cites W2111166381 @default.
- W1604550862 cites W2111179758 @default.
- W1604550862 cites W2112522484 @default.
- W1604550862 cites W2112757949 @default.
- W1604550862 cites W2112977667 @default.
- W1604550862 cites W2116112113 @default.
- W1604550862 cites W2122753628 @default.
- W1604550862 cites W2122765998 @default.
- W1604550862 cites W2123760223 @default.
- W1604550862 cites W2124136203 @default.
- W1604550862 cites W2127527567 @default.
- W1604550862 cites W2127848106 @default.
- W1604550862 cites W2129246912 @default.
- W1604550862 cites W2131072539 @default.
- W1604550862 cites W2140775281 @default.
- W1604550862 cites W2140861424 @default.
- W1604550862 cites W2141486030 @default.
- W1604550862 cites W2143053972 @default.
- W1604550862 cites W2144474523 @default.
- W1604550862 cites W2147628357 @default.
- W1604550862 cites W2147851766 @default.
- W1604550862 cites W2149292461 @default.
- W1604550862 cites W2150360884 @default.
- W1604550862 cites W2153468003 @default.
- W1604550862 cites W2157595233 @default.
- W1604550862 cites W2161085322 @default.
- W1604550862 cites W2161559787 @default.
- W1604550862 cites W2162555631 @default.
- W1604550862 cites W2163311956 @default.
- W1604550862 cites W2163745052 @default.
- W1604550862 cites W2164734679 @default.
- W1604550862 cites W2166193623 @default.
- W1604550862 cites W2169218674 @default.
- W1604550862 cites W2170005697 @default.
- W1604550862 cites W2170277594 @default.
- W1604550862 cites W2171317168 @default.
- W1604550862 cites W2172156384 @default.
- W1604550862 cites W2179851717 @default.
- W1604550862 cites W2198961170 @default.
- W1604550862 cites W2271141838 @default.
- W1604550862 cites W2302162838 @default.
- W1604550862 cites W4243555381 @default.
- W1604550862 cites W4253254277 @default.
- W1604550862 doi "https://doi.org/10.1016/j.pt.2015.04.004" @default.
- W1604550862 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25985898" @default.
- W1604550862 hasPublicationYear "2015" @default.