Matches in SemOpenAlex for { <https://semopenalex.org/work/W1605228128> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1605228128 abstract "One of the main tasks of requirements engineering (RE) is the creation of a requirements document that precisely, consistently, and completely describes the functional and non-functional properties of the system to be built. At some point during the RE process, the requirements are written down using a natural language or a requirements specification language. On one hand, natural language is flexible, universal, and wide-spread. On the other hand, natural language requirements are recognized widely as being incomplete, inconsistent, and inherently ambiguous. Semi-formal and formal requirements specification techniques, such as UML [13] or SCR [5], have been proposed to overcome these deficiencies. Completeness and consistency of these specifications can be tackled to some degree mechanically by tools. However, as a recent study shows, ambiguity rarely surfaces during the development of a requirements model [10]. Thus, since a requirements specification technique enforces precision, the resulting requirements model becomes unambiguously wrong. In this paper, we show how to detect ambiguities in natural language requirements using a checklist. We distinguish between linguistic and RE-specific ambiguities. Linguistic ambiguities are those ambiguities that are usually discussed in RE textbooks such as ambiguous pronoun references. RE-specific ambiguities occur with respect to the RE context, which includes the application domain and the system domain. For example, the requirement (1) If the bank customer maintains a minimum balance in his or her checking account, there is no monthly service charge. is ambiguous not because of its linguistic representation, but because of the operational environment and application domain. In the requirements documents that we have investigated, RE-specific ambiguities account for the majority of ambiguities, while pure linguistic ambiguities played a less significant role. In this paper, we present also an approach that allows identifying types of RE-specific ambiguity from a metamodel, e.g., of a requirements specification technique. Based on the identified types of ambiguity, we have developed an improved inspection technique for natural language requirements on the basis of checklists and scenario-based reading." @default.
- W1605228128 created "2016-06-24" @default.
- W1605228128 creator A5089596799 @default.
- W1605228128 date "2000-01-01" @default.
- W1605228128 modified "2023-09-28" @default.
- W1605228128 title "Taming Ambiguity in Natural Language Requirements" @default.
- W1605228128 cites W1501338961 @default.
- W1605228128 cites W1504045958 @default.
- W1605228128 cites W1644866298 @default.
- W1605228128 cites W1991597775 @default.
- W1605228128 cites W2125708466 @default.
- W1605228128 cites W234329943 @default.
- W1605228128 cites W2492360768 @default.
- W1605228128 cites W3194627255 @default.
- W1605228128 cites W2515690948 @default.
- W1605228128 hasPublicationYear "2000" @default.
- W1605228128 type Work @default.
- W1605228128 sameAs 1605228128 @default.
- W1605228128 citedByCount "40" @default.
- W1605228128 countsByYear W16052281282013 @default.
- W1605228128 countsByYear W16052281282014 @default.
- W1605228128 countsByYear W16052281282015 @default.
- W1605228128 countsByYear W16052281282016 @default.
- W1605228128 countsByYear W16052281282017 @default.
- W1605228128 countsByYear W16052281282018 @default.
- W1605228128 countsByYear W16052281282020 @default.
- W1605228128 countsByYear W16052281282021 @default.
- W1605228128 crossrefType "journal-article" @default.
- W1605228128 hasAuthorship W1605228128A5089596799 @default.
- W1605228128 hasConcept C102780508 @default.
- W1605228128 hasConcept C115903868 @default.
- W1605228128 hasConcept C116253237 @default.
- W1605228128 hasConcept C135475081 @default.
- W1605228128 hasConcept C173577280 @default.
- W1605228128 hasConcept C186846655 @default.
- W1605228128 hasConcept C195324797 @default.
- W1605228128 hasConcept C199360897 @default.
- W1605228128 hasConcept C199747065 @default.
- W1605228128 hasConcept C201677973 @default.
- W1605228128 hasConcept C204321447 @default.
- W1605228128 hasConcept C2777904410 @default.
- W1605228128 hasConcept C2780522230 @default.
- W1605228128 hasConcept C41008148 @default.
- W1605228128 hasConcept C45384764 @default.
- W1605228128 hasConcept C52913732 @default.
- W1605228128 hasConcept C529173508 @default.
- W1605228128 hasConcept C59488412 @default.
- W1605228128 hasConcept C62235348 @default.
- W1605228128 hasConcept C6604083 @default.
- W1605228128 hasConceptScore W1605228128C102780508 @default.
- W1605228128 hasConceptScore W1605228128C115903868 @default.
- W1605228128 hasConceptScore W1605228128C116253237 @default.
- W1605228128 hasConceptScore W1605228128C135475081 @default.
- W1605228128 hasConceptScore W1605228128C173577280 @default.
- W1605228128 hasConceptScore W1605228128C186846655 @default.
- W1605228128 hasConceptScore W1605228128C195324797 @default.
- W1605228128 hasConceptScore W1605228128C199360897 @default.
- W1605228128 hasConceptScore W1605228128C199747065 @default.
- W1605228128 hasConceptScore W1605228128C201677973 @default.
- W1605228128 hasConceptScore W1605228128C204321447 @default.
- W1605228128 hasConceptScore W1605228128C2777904410 @default.
- W1605228128 hasConceptScore W1605228128C2780522230 @default.
- W1605228128 hasConceptScore W1605228128C41008148 @default.
- W1605228128 hasConceptScore W1605228128C45384764 @default.
- W1605228128 hasConceptScore W1605228128C52913732 @default.
- W1605228128 hasConceptScore W1605228128C529173508 @default.
- W1605228128 hasConceptScore W1605228128C59488412 @default.
- W1605228128 hasConceptScore W1605228128C62235348 @default.
- W1605228128 hasConceptScore W1605228128C6604083 @default.
- W1605228128 hasOpenAccess W1605228128 @default.
- W1605228128 hasRelatedWork W1488737450 @default.
- W1605228128 hasRelatedWork W1501338961 @default.
- W1605228128 hasRelatedWork W1537202 @default.
- W1605228128 hasRelatedWork W1593966229 @default.
- W1605228128 hasRelatedWork W1763330547 @default.
- W1605228128 hasRelatedWork W1855830504 @default.
- W1605228128 hasRelatedWork W1974297025 @default.
- W1605228128 hasRelatedWork W2018940430 @default.
- W1605228128 hasRelatedWork W2046876961 @default.
- W1605228128 hasRelatedWork W2106364303 @default.
- W1605228128 hasRelatedWork W2120765605 @default.
- W1605228128 hasRelatedWork W2127997520 @default.
- W1605228128 hasRelatedWork W2128830091 @default.
- W1605228128 hasRelatedWork W2135239686 @default.
- W1605228128 hasRelatedWork W2158076786 @default.
- W1605228128 hasRelatedWork W2162497509 @default.
- W1605228128 hasRelatedWork W2162555922 @default.
- W1605228128 hasRelatedWork W2165504642 @default.
- W1605228128 hasRelatedWork W33595978 @default.
- W1605228128 hasRelatedWork W6274262 @default.
- W1605228128 isParatext "false" @default.
- W1605228128 isRetracted "false" @default.
- W1605228128 magId "1605228128" @default.
- W1605228128 workType "article" @default.