Matches in SemOpenAlex for { <https://semopenalex.org/work/W16055224> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W16055224 abstract "Author(s): Vaz, Garnet Jason | Advisor(s): Bhat, Harish S | Abstract: In this thesis, we propose various algorithms for problems arising in nonlinear circuits, nonlinear electromagnetics and data mining. Through the design and implementation of these algorithms, we show that the algorithms developed are scalable.In the first part of the thesis we provide two solutions to the forward problem of finding the steady-state solution of nonlinear RLC circuits subjected to harmonic forcing. The work generalizes and provides a mathematical theory bridging prior work on structured graphs and extending it to random graphs. Both algorithms are shown to be orders of magnitude faster than time stepping. We introduce an inverse problem of maximizing the energy/voltage at certain nodes of the graph without altering the graph structure. By altering the eigenvalues associated with the weighted graph Laplacian of the underlying circuit using a Newton-type algorithm, we solve the inverse problem. Extensive results verify that a majority of random graph circuits are capable of causing amplitude boosts.Next, we connect nonlinear Maxwell's equations in 2D to the RLC circuit problem. This relationship is achieved by considering the finite volume decomposition of nonlinear Maxwell's equations. When we consider a discretization of the domain, the dual graph of this discretization provides us with a planar random graph structure very similar to our previous work. Thus, algorithms developed in the previous work become applicable. Using distributed computing, we develop an implementation of one of the algorithms that scales to large-scale problems allowing us to obtain accurate and fast solutions. Simulations are conducted for structured and unstructured meshes, and we verify that the method is first-order in space.Our final application is in the field of supervised learning for regression problems. Regression trees have been used extensively since their introduction and form the basis of several state-of-the-art machine learning methods today. Regression trees minimize the loss criterion (objective function) using a greedy heuristic algorithm. The usual form of the loss criterion is the squared error. While it has been known that minimizing the absolute deviation provides more robust trees in the presence of outliers trees based on absolute loss minimization have been ignored because they were believed to be computationally expensive. We provide the first implementation which has the same algorithmic complexity as compared to trees built with the squared error loss function. Besides computing absolute deviation trees, our algorithm generalizes and can be used as a non-parametric alternative to quantile regression." @default.
- W16055224 created "2016-06-24" @default.
- W16055224 creator A5003107719 @default.
- W16055224 date "2014-01-01" @default.
- W16055224 modified "2023-09-26" @default.
- W16055224 title "Graph Based Scalable Algorithms with Applications" @default.
- W16055224 cites W1678356000 @default.
- W16055224 cites W1964091827 @default.
- W16055224 cites W2003261065 @default.
- W16055224 cites W2166952597 @default.
- W16055224 hasPublicationYear "2014" @default.
- W16055224 type Work @default.
- W16055224 sameAs 16055224 @default.
- W16055224 citedByCount "0" @default.
- W16055224 crossrefType "journal-article" @default.
- W16055224 hasAuthorship W16055224A5003107719 @default.
- W16055224 hasConcept C11413529 @default.
- W16055224 hasConcept C115178988 @default.
- W16055224 hasConcept C121332964 @default.
- W16055224 hasConcept C132525143 @default.
- W16055224 hasConcept C134306372 @default.
- W16055224 hasConcept C158622935 @default.
- W16055224 hasConcept C158693339 @default.
- W16055224 hasConcept C165801399 @default.
- W16055224 hasConcept C203776342 @default.
- W16055224 hasConcept C22149727 @default.
- W16055224 hasConcept C33923547 @default.
- W16055224 hasConcept C41008148 @default.
- W16055224 hasConcept C48044578 @default.
- W16055224 hasConcept C52192207 @default.
- W16055224 hasConcept C62520636 @default.
- W16055224 hasConcept C73000952 @default.
- W16055224 hasConcept C74003402 @default.
- W16055224 hasConcept C77088390 @default.
- W16055224 hasConcept C80444323 @default.
- W16055224 hasConcept C89880566 @default.
- W16055224 hasConceptScore W16055224C11413529 @default.
- W16055224 hasConceptScore W16055224C115178988 @default.
- W16055224 hasConceptScore W16055224C121332964 @default.
- W16055224 hasConceptScore W16055224C132525143 @default.
- W16055224 hasConceptScore W16055224C134306372 @default.
- W16055224 hasConceptScore W16055224C158622935 @default.
- W16055224 hasConceptScore W16055224C158693339 @default.
- W16055224 hasConceptScore W16055224C165801399 @default.
- W16055224 hasConceptScore W16055224C203776342 @default.
- W16055224 hasConceptScore W16055224C22149727 @default.
- W16055224 hasConceptScore W16055224C33923547 @default.
- W16055224 hasConceptScore W16055224C41008148 @default.
- W16055224 hasConceptScore W16055224C48044578 @default.
- W16055224 hasConceptScore W16055224C52192207 @default.
- W16055224 hasConceptScore W16055224C62520636 @default.
- W16055224 hasConceptScore W16055224C73000952 @default.
- W16055224 hasConceptScore W16055224C74003402 @default.
- W16055224 hasConceptScore W16055224C77088390 @default.
- W16055224 hasConceptScore W16055224C80444323 @default.
- W16055224 hasConceptScore W16055224C89880566 @default.
- W16055224 hasLocation W160552241 @default.
- W16055224 hasOpenAccess W16055224 @default.
- W16055224 hasPrimaryLocation W160552241 @default.
- W16055224 hasRelatedWork W1529849411 @default.
- W16055224 hasRelatedWork W1972697957 @default.
- W16055224 hasRelatedWork W2039759060 @default.
- W16055224 hasRelatedWork W2109119832 @default.
- W16055224 hasRelatedWork W2605312685 @default.
- W16055224 hasRelatedWork W2608108910 @default.
- W16055224 hasRelatedWork W2914837010 @default.
- W16055224 hasRelatedWork W2917720955 @default.
- W16055224 hasRelatedWork W2941407859 @default.
- W16055224 hasRelatedWork W2951778850 @default.
- W16055224 hasRelatedWork W2962800341 @default.
- W16055224 hasRelatedWork W2967904966 @default.
- W16055224 hasRelatedWork W3010618012 @default.
- W16055224 hasRelatedWork W3012449462 @default.
- W16055224 hasRelatedWork W3091748296 @default.
- W16055224 hasRelatedWork W3103997733 @default.
- W16055224 hasRelatedWork W3144028801 @default.
- W16055224 hasRelatedWork W3156065822 @default.
- W16055224 hasRelatedWork W3158305228 @default.
- W16055224 hasRelatedWork W3162877142 @default.
- W16055224 isParatext "false" @default.
- W16055224 isRetracted "false" @default.
- W16055224 magId "16055224" @default.
- W16055224 workType "article" @default.