Matches in SemOpenAlex for { <https://semopenalex.org/work/W1607165029> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W1607165029 abstract "In this thesis, which consists of four papers, approximation of optimal control problems is studied. In Paper I the Symplectic Pontryagin method for approximation of optimally controlled ordinary differential equations is presented. The method consists of a Symplectic Euler time stepping scheme for a Hamiltonian system with a regularized Hamiltonian. Under some assumptions it is shown that the approximate value function associated with this scheme converges to the original value function with a linear rate. In Paper II the ideas from Paper I are extended to approximation of an optimally controlled partial differential equation, a one-dimensional Ginzburg-Landau equation. The approximation is performed in two steps. In the first step a value function associated with a finite element spatial discretization is shown to converge quadratically in the mesh size to the original value function. In the second step a Symplectic Euler discretization in time is shown to converge with a linear rate. The behavior of optimal solutions is shown by numerical examples. In Paper III the same approximation method as in Paper II is applied to three other problems; the optimal design of an electric conductor, the design of an elastic domain, and the problem of reconstructing the interior of an object from measured electrical surface currents. Since these problems are time-independent the Hamilton-Jacobi theory can not be used. In order to be able to obtain error bounds the problems are therefore transferred to a setting where time plays a role. Computer experiments with the Symplectic Pontryagin method is performed for all three problems. Common to the three first papers is that the convergence proofs use that the approximate value functions solve Hamilton-Jacobi equations consistent with the original Hamilton-Jacobi equations. Paper IV concerns convergence of attainable sets for non-convex differential inclusions. When the right hand side in the differential inclusion is a bounded, Lipschitz set-valued function it is shown that the convergence in Hausdorff-distance of attainable sets for a Forward Euler discretization is linear in the time step. This implies that dynamic programming using Forward Euler discretizations of optimal control problems converge with a linear rate when all the functions involved are bounded and Lipschitz continuous." @default.
- W1607165029 created "2016-06-24" @default.
- W1607165029 creator A5034216342 @default.
- W1607165029 date "2008-09-10" @default.
- W1607165029 modified "2023-09-27" @default.
- W1607165029 title "CONVERGENCE RATES FOR AN OPTIMALLY CONTROLLED GINZBURG-LANDAU EQUATION" @default.
- W1607165029 cites W1494380031 @default.
- W1607165029 cites W1527296550 @default.
- W1607165029 cites W1560060148 @default.
- W1607165029 cites W1978169712 @default.
- W1607165029 cites W1979308690 @default.
- W1607165029 cites W2010288972 @default.
- W1607165029 cites W2029313357 @default.
- W1607165029 cites W2040800769 @default.
- W1607165029 cites W2043333828 @default.
- W1607165029 cites W2047937822 @default.
- W1607165029 cites W2059995110 @default.
- W1607165029 cites W2116822454 @default.
- W1607165029 cites W2148316915 @default.
- W1607165029 cites W2165095691 @default.
- W1607165029 cites W2244714150 @default.
- W1607165029 hasPublicationYear "2008" @default.
- W1607165029 type Work @default.
- W1607165029 sameAs 1607165029 @default.
- W1607165029 citedByCount "2" @default.
- W1607165029 crossrefType "posted-content" @default.
- W1607165029 hasAuthorship W1607165029A5034216342 @default.
- W1607165029 hasConcept C126255220 @default.
- W1607165029 hasConcept C127162648 @default.
- W1607165029 hasConcept C130787639 @default.
- W1607165029 hasConcept C134306372 @default.
- W1607165029 hasConcept C14646407 @default.
- W1607165029 hasConcept C168619227 @default.
- W1607165029 hasConcept C28826006 @default.
- W1607165029 hasConcept C31258907 @default.
- W1607165029 hasConcept C33923547 @default.
- W1607165029 hasConcept C41008148 @default.
- W1607165029 hasConcept C51544822 @default.
- W1607165029 hasConcept C57869625 @default.
- W1607165029 hasConcept C73000952 @default.
- W1607165029 hasConcept C78045399 @default.
- W1607165029 hasConcept C91575142 @default.
- W1607165029 hasConcept C93779851 @default.
- W1607165029 hasConceptScore W1607165029C126255220 @default.
- W1607165029 hasConceptScore W1607165029C127162648 @default.
- W1607165029 hasConceptScore W1607165029C130787639 @default.
- W1607165029 hasConceptScore W1607165029C134306372 @default.
- W1607165029 hasConceptScore W1607165029C14646407 @default.
- W1607165029 hasConceptScore W1607165029C168619227 @default.
- W1607165029 hasConceptScore W1607165029C28826006 @default.
- W1607165029 hasConceptScore W1607165029C31258907 @default.
- W1607165029 hasConceptScore W1607165029C33923547 @default.
- W1607165029 hasConceptScore W1607165029C41008148 @default.
- W1607165029 hasConceptScore W1607165029C51544822 @default.
- W1607165029 hasConceptScore W1607165029C57869625 @default.
- W1607165029 hasConceptScore W1607165029C73000952 @default.
- W1607165029 hasConceptScore W1607165029C78045399 @default.
- W1607165029 hasConceptScore W1607165029C91575142 @default.
- W1607165029 hasConceptScore W1607165029C93779851 @default.
- W1607165029 hasLocation W16071650291 @default.
- W1607165029 hasOpenAccess W1607165029 @default.
- W1607165029 hasPrimaryLocation W16071650291 @default.
- W1607165029 hasRelatedWork W1548287612 @default.
- W1607165029 hasRelatedWork W1964412208 @default.
- W1607165029 hasRelatedWork W1968510453 @default.
- W1607165029 hasRelatedWork W1986180515 @default.
- W1607165029 hasRelatedWork W2002935642 @default.
- W1607165029 hasRelatedWork W2005420841 @default.
- W1607165029 hasRelatedWork W2019601370 @default.
- W1607165029 hasRelatedWork W2020481578 @default.
- W1607165029 hasRelatedWork W2053931412 @default.
- W1607165029 hasRelatedWork W2076885628 @default.
- W1607165029 hasRelatedWork W2084436749 @default.
- W1607165029 hasRelatedWork W2100495513 @default.
- W1607165029 hasRelatedWork W2108081300 @default.
- W1607165029 hasRelatedWork W2109753894 @default.
- W1607165029 hasRelatedWork W2125717831 @default.
- W1607165029 hasRelatedWork W2135651599 @default.
- W1607165029 hasRelatedWork W2503240363 @default.
- W1607165029 hasRelatedWork W2524953147 @default.
- W1607165029 hasRelatedWork W2963535445 @default.
- W1607165029 hasRelatedWork W3016749842 @default.
- W1607165029 isParatext "false" @default.
- W1607165029 isRetracted "false" @default.
- W1607165029 magId "1607165029" @default.
- W1607165029 workType "article" @default.