Matches in SemOpenAlex for { <https://semopenalex.org/work/W1607178097> ?p ?o ?g. }
- W1607178097 endingPage "1650" @default.
- W1607178097 startingPage "1633" @default.
- W1607178097 abstract "Abstract The self‐organizing map (SOM) algorithm, originally introduced by Teuvo Kohonen, has seen an incredible range of applications, especially because of its unique abilities to cluster and visualize high‐dimensional data. The data are projected onto a topographic map, a discrete lattice that locally approximates the data manifold. Several adaptations to the original concept have been introduced, but one that uses kernels to represent the local density of the manifold has received much attention. In this way, one expects that clusters in the data can be better visualized in the topographic map. For these kernel‐based topographic maps, kernel topographic maps, or probabilistic topographic maps, several learning principles have been proposed, mostly for Gaussian kernels. We review these learning algorithms, distinguish between homoscedastic and heteroscedastic Gaussian kernels with a focus on fixed point rules, and show some successful applications." @default.
- W1607178097 created "2016-06-24" @default.
- W1607178097 creator A5022490304 @default.
- W1607178097 date "2009-03-16" @default.
- W1607178097 modified "2023-09-26" @default.
- W1607178097 title "Kernel‐Based Topographic Maps: Theory and Applications" @default.
- W1607178097 cites W128222864 @default.
- W1607178097 cites W1966671935 @default.
- W1607178097 cites W1972536405 @default.
- W1607178097 cites W1981367467 @default.
- W1607178097 cites W1984083069 @default.
- W1607178097 cites W1990597263 @default.
- W1607178097 cites W1990904847 @default.
- W1607178097 cites W1994032111 @default.
- W1607178097 cites W2027434643 @default.
- W1607178097 cites W2048071570 @default.
- W1607178097 cites W2051719061 @default.
- W1607178097 cites W2052702017 @default.
- W1607178097 cites W2060873042 @default.
- W1607178097 cites W2074558389 @default.
- W1607178097 cites W2075073685 @default.
- W1607178097 cites W2081360048 @default.
- W1607178097 cites W2084151718 @default.
- W1607178097 cites W2089438500 @default.
- W1607178097 cites W2097810157 @default.
- W1607178097 cites W2099577980 @default.
- W1607178097 cites W2101563748 @default.
- W1607178097 cites W2104095591 @default.
- W1607178097 cites W2107636931 @default.
- W1607178097 cites W2118367125 @default.
- W1607178097 cites W2131060073 @default.
- W1607178097 cites W2134395659 @default.
- W1607178097 cites W2139212933 @default.
- W1607178097 cites W2146837144 @default.
- W1607178097 cites W2151521446 @default.
- W1607178097 cites W2152151913 @default.
- W1607178097 cites W2155298439 @default.
- W1607178097 cites W2158418925 @default.
- W1607178097 cites W2162152644 @default.
- W1607178097 cites W2164047436 @default.
- W1607178097 cites W2168782270 @default.
- W1607178097 cites W2172168236 @default.
- W1607178097 cites W2253776861 @default.
- W1607178097 cites W2308727032 @default.
- W1607178097 cites W2488678869 @default.
- W1607178097 cites W2887242076 @default.
- W1607178097 cites W4212863985 @default.
- W1607178097 cites W4213332169 @default.
- W1607178097 cites W579669452 @default.
- W1607178097 cites W65738273 @default.
- W1607178097 doi "https://doi.org/10.1002/9780470050118.ecse365" @default.
- W1607178097 hasPublicationYear "2009" @default.
- W1607178097 type Work @default.
- W1607178097 sameAs 1607178097 @default.
- W1607178097 citedByCount "6" @default.
- W1607178097 countsByYear W16071780972012 @default.
- W1607178097 countsByYear W16071780972013 @default.
- W1607178097 countsByYear W16071780972015 @default.
- W1607178097 countsByYear W16071780972016 @default.
- W1607178097 crossrefType "other" @default.
- W1607178097 hasAuthorship W1607178097A5022490304 @default.
- W1607178097 hasConcept C101104100 @default.
- W1607178097 hasConcept C104409967 @default.
- W1607178097 hasConcept C111168008 @default.
- W1607178097 hasConcept C114614502 @default.
- W1607178097 hasConcept C119857082 @default.
- W1607178097 hasConcept C120665830 @default.
- W1607178097 hasConcept C121332964 @default.
- W1607178097 hasConcept C134649547 @default.
- W1607178097 hasConcept C151876577 @default.
- W1607178097 hasConcept C153180895 @default.
- W1607178097 hasConcept C154945302 @default.
- W1607178097 hasConcept C15744967 @default.
- W1607178097 hasConcept C180747234 @default.
- W1607178097 hasConcept C192209626 @default.
- W1607178097 hasConcept C33923547 @default.
- W1607178097 hasConcept C41008148 @default.
- W1607178097 hasConcept C50644808 @default.
- W1607178097 hasConcept C6757342 @default.
- W1607178097 hasConcept C70518039 @default.
- W1607178097 hasConcept C74193536 @default.
- W1607178097 hasConceptScore W1607178097C101104100 @default.
- W1607178097 hasConceptScore W1607178097C104409967 @default.
- W1607178097 hasConceptScore W1607178097C111168008 @default.
- W1607178097 hasConceptScore W1607178097C114614502 @default.
- W1607178097 hasConceptScore W1607178097C119857082 @default.
- W1607178097 hasConceptScore W1607178097C120665830 @default.
- W1607178097 hasConceptScore W1607178097C121332964 @default.
- W1607178097 hasConceptScore W1607178097C134649547 @default.
- W1607178097 hasConceptScore W1607178097C151876577 @default.
- W1607178097 hasConceptScore W1607178097C153180895 @default.
- W1607178097 hasConceptScore W1607178097C154945302 @default.
- W1607178097 hasConceptScore W1607178097C15744967 @default.
- W1607178097 hasConceptScore W1607178097C180747234 @default.
- W1607178097 hasConceptScore W1607178097C192209626 @default.
- W1607178097 hasConceptScore W1607178097C33923547 @default.
- W1607178097 hasConceptScore W1607178097C41008148 @default.
- W1607178097 hasConceptScore W1607178097C50644808 @default.