Matches in SemOpenAlex for { <https://semopenalex.org/work/W1608250541> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W1608250541 abstract "Conventional sampling (Shannon's sampling formulation and its approximation-theoretic counterparts) and interpolation theories provide effective solutions to the problem of reconstructing a signal from its samples, but they are primarily restricted to the noise-free scenario. The purpose of this thesis is to extend the standard techniques so as to be able to handle noisy data. First, we consider a realistic setting where a multidimensional signal is prefiltered prior to sampling, and the samples are corrupted by additive noise. In order to counterbalance the effect of noise, the reconstruction problem is formulated in a variational framework where the solution is obtained by minimizing a continuous-domain Tikhonov-like L2-regularization subject to a lp-based data fidelity constraint. We present theoretical justification for the minimization of this cost functional and show that the global-minimum solution belongs to a shift-invariant space generated by a function that is generally not bandlimited. The optimal reconstruction space is characterized by a condition that links the generating function to the regularization operator and implies the existence of a B-spline-like basis. We also consider stochastic formulations – min-max and minimum mean-squared error (MMSE/Wiener) formulations – of the nonideal sampling problem and show that they yield the same type of estimators and point towards the existence of optimal shift-invariant spaces for certain classes of stochastic processes. In the stochastic context, we also derive an exact formula for the error of approximating a stationary stochastic signal in the presence of discrete additive noise and justify the noise-reducing effect of regularization through illustrations. Next, we focus on the use of a much wider class of non-quadratic regularization functionals for the problem of interpolation in the presence of noise. Starting from the afine-invariance of the solution, we show that the Lp-norm (p ≠ 2) is the most suitable type of non-quadratic regularization for our purpose. We give monotonically convergent numerical algorithms to carry out the minimization of the non-quadratic cost criterion. We also demonstrate experimentally that the proposed regularized interpolation scheme provides superior interpolation performance compared to standard methods in the presence of noise. Finally, we address the problem of selecting an appropriate value for the regularization parameter which is most crucial for the working of variational methods in general including those discussed in this thesis. We propose a practical scheme that is based on the concept of risk estimation to achieve minimum MSE performance. In this context, we first review a well known result due to Stein (Stein's unbiased risk estimate — SURE) that is applicable for data corrupted by additive Gaussian noise and also derive a new risk estimate for a Poisson-Gaussian mixture model that is appropriate for certain biomedical imaging applications. Next, we introduce a novel and efficient Monte-Carlo technique to compute SURE for arbitrary nonlinear algorithms. We demonstrate experimentally that the proposed Monte-Carlo SURE yields regularization parameter values that are close to the oracle-optimum (minimum MSE) for all methods considered in this work. We also present results that illustrate the applicability of our technique to a wide variety of algorithms in denoising and deconvolution." @default.
- W1608250541 created "2016-06-24" @default.
- W1608250541 creator A5050701971 @default.
- W1608250541 date "2009-01-01" @default.
- W1608250541 modified "2023-09-23" @default.
- W1608250541 title "Nonideal sampling and regularized interpolation of noisy data" @default.
- W1608250541 doi "https://doi.org/10.5075/epfl-thesis-4305" @default.
- W1608250541 hasPublicationYear "2009" @default.
- W1608250541 type Work @default.
- W1608250541 sameAs 1608250541 @default.
- W1608250541 citedByCount "0" @default.
- W1608250541 crossrefType "journal-article" @default.
- W1608250541 hasAuthorship W1608250541A5050701971 @default.
- W1608250541 hasConcept C102519508 @default.
- W1608250541 hasConcept C105795698 @default.
- W1608250541 hasConcept C11413529 @default.
- W1608250541 hasConcept C121684516 @default.
- W1608250541 hasConcept C126255220 @default.
- W1608250541 hasConcept C129997835 @default.
- W1608250541 hasConcept C134306372 @default.
- W1608250541 hasConcept C135252773 @default.
- W1608250541 hasConcept C137800194 @default.
- W1608250541 hasConcept C152442038 @default.
- W1608250541 hasConcept C154945302 @default.
- W1608250541 hasConcept C185429906 @default.
- W1608250541 hasConcept C2776135515 @default.
- W1608250541 hasConcept C28826006 @default.
- W1608250541 hasConcept C33923547 @default.
- W1608250541 hasConcept C41008148 @default.
- W1608250541 hasConcept C502989409 @default.
- W1608250541 hasConceptScore W1608250541C102519508 @default.
- W1608250541 hasConceptScore W1608250541C105795698 @default.
- W1608250541 hasConceptScore W1608250541C11413529 @default.
- W1608250541 hasConceptScore W1608250541C121684516 @default.
- W1608250541 hasConceptScore W1608250541C126255220 @default.
- W1608250541 hasConceptScore W1608250541C129997835 @default.
- W1608250541 hasConceptScore W1608250541C134306372 @default.
- W1608250541 hasConceptScore W1608250541C135252773 @default.
- W1608250541 hasConceptScore W1608250541C137800194 @default.
- W1608250541 hasConceptScore W1608250541C152442038 @default.
- W1608250541 hasConceptScore W1608250541C154945302 @default.
- W1608250541 hasConceptScore W1608250541C185429906 @default.
- W1608250541 hasConceptScore W1608250541C2776135515 @default.
- W1608250541 hasConceptScore W1608250541C28826006 @default.
- W1608250541 hasConceptScore W1608250541C33923547 @default.
- W1608250541 hasConceptScore W1608250541C41008148 @default.
- W1608250541 hasConceptScore W1608250541C502989409 @default.
- W1608250541 hasLocation W16082505411 @default.
- W1608250541 hasOpenAccess W1608250541 @default.
- W1608250541 hasPrimaryLocation W16082505411 @default.
- W1608250541 hasRelatedWork W2147017696 @default.
- W1608250541 hasRelatedWork W2209614641 @default.
- W1608250541 hasRelatedWork W2332919953 @default.
- W1608250541 hasRelatedWork W2734101730 @default.
- W1608250541 hasRelatedWork W2919886096 @default.
- W1608250541 hasRelatedWork W2951009766 @default.
- W1608250541 hasRelatedWork W2952041241 @default.
- W1608250541 hasRelatedWork W2953257631 @default.
- W1608250541 hasRelatedWork W2963183022 @default.
- W1608250541 hasRelatedWork W2964172739 @default.
- W1608250541 hasRelatedWork W2999268094 @default.
- W1608250541 hasRelatedWork W3005305519 @default.
- W1608250541 hasRelatedWork W3007992134 @default.
- W1608250541 hasRelatedWork W3035618875 @default.
- W1608250541 hasRelatedWork W3092746631 @default.
- W1608250541 hasRelatedWork W3152354409 @default.
- W1608250541 hasRelatedWork W3191689423 @default.
- W1608250541 hasRelatedWork W72890087 @default.
- W1608250541 hasRelatedWork W757916647 @default.
- W1608250541 hasRelatedWork W835905657 @default.
- W1608250541 isParatext "false" @default.
- W1608250541 isRetracted "false" @default.
- W1608250541 magId "1608250541" @default.
- W1608250541 workType "article" @default.