Matches in SemOpenAlex for { <https://semopenalex.org/work/W160967669> ?p ?o ?g. }
- W160967669 abstract "This thesis introduces techniques to utilize information theory, particularly entropy for enhancing data visualization and exploration. The ultimate goal with this work is to enable users to perceive as much as information available for recognizing objects, detecting regular or non-regular patterns and reducing user effort while executing the required tasks. We believe that the metrics to be set for enhancing computer generated visualizations should be quantifiable and that quantification should measure the information perception of the user. The proper way to solve this problem is utilizing information theory, particularly entropy. Entropy offers quantification of the information amount in a general communication system. In the communication model, information sender and information receiver are connected with a channel. We are inspired from this model and exploited it in a different way, namely we set the information sender as the data to be visualized, the information receiver as the viewer and the communication channel as the screen where the visualized image is displayed. In this thesis we explore the usage of entropy in three different visualization problems, -Enhancing the visualization of large scale social networks for better perception, -Finding the best representational images of a 3D object to visually inspect with minimal loss of information, -Automatic navigation over a 3D terrain with minimal loss of information. Visualization of large scale social networks is still a major challenge for information visualization researchers. When a thousand nodes are displayed on the screen with the lack of coloring, sizing and filtering mechanisms, the users generally do not perceive much on the first look. They usually use pointing devices or keyboard for zooming and panning to find the information that they are looking for. With this thesis we tried to present a visualization approach that uses coloring, sizing and filtering to help the users recognize the presented information. The second problem that we tried to tackle is finding the best representational images of 3D models. This problem is highly subjective in cognitive manner. The best or good definitions do not depend on any metric or any quantification, furthermore, when the same image is presented to two different users it can be identified differently. However in this thesis we tried to map some metrics to best or good definitions for representational images, such as showing the maximum faces, maximum saliency or combination of both in an image. The third problem that we tried to find a solution is automatic terrain navigation with minimal loss of information. The information to be quantified on this problem is taken as the surface visibility of a terrain. However the visibility problem is changed with the heuristic that users generally focus on city centers, buildings and interesting points during terrain exploration. In order to improve the information amount at the time of navigation, we should focus on those areas. Hence we employed the road network data, and set the heuristic that intersections of road network segments are the residential places. In this problem, region extraction using road network data, viewpoint entropy for camera positions, and automatic camera path generation methods are investigated." @default.
- W160967669 created "2016-06-24" @default.
- W160967669 creator A5019733344 @default.
- W160967669 date "2012-01-01" @default.
- W160967669 modified "2023-09-23" @default.
- W160967669 title "Information theory assisted data visualization and exploration" @default.
- W160967669 cites W1007993945 @default.
- W160967669 cites W1497599070 @default.
- W160967669 cites W1520989437 @default.
- W160967669 cites W1558400591 @default.
- W160967669 cites W1568669012 @default.
- W160967669 cites W1593641494 @default.
- W160967669 cites W1621353161 @default.
- W160967669 cites W1664061557 @default.
- W160967669 cites W1717440967 @default.
- W160967669 cites W178139908 @default.
- W160967669 cites W1866493243 @default.
- W160967669 cites W1967147504 @default.
- W160967669 cites W1971937094 @default.
- W160967669 cites W1976912910 @default.
- W160967669 cites W1978226270 @default.
- W160967669 cites W1978558026 @default.
- W160967669 cites W1992709202 @default.
- W160967669 cites W1992751433 @default.
- W160967669 cites W2005371019 @default.
- W160967669 cites W2012557827 @default.
- W160967669 cites W2018779169 @default.
- W160967669 cites W2029129133 @default.
- W160967669 cites W2041783407 @default.
- W160967669 cites W2062210281 @default.
- W160967669 cites W2072207934 @default.
- W160967669 cites W2075264427 @default.
- W160967669 cites W2080145017 @default.
- W160967669 cites W2086236971 @default.
- W160967669 cites W2097481508 @default.
- W160967669 cites W2102452998 @default.
- W160967669 cites W2111347866 @default.
- W160967669 cites W2122991194 @default.
- W160967669 cites W2125685777 @default.
- W160967669 cites W2125710404 @default.
- W160967669 cites W2128272608 @default.
- W160967669 cites W2128769229 @default.
- W160967669 cites W2128972805 @default.
- W160967669 cites W2129579220 @default.
- W160967669 cites W2129761755 @default.
- W160967669 cites W2137372226 @default.
- W160967669 cites W2140564800 @default.
- W160967669 cites W2147468287 @default.
- W160967669 cites W2147545324 @default.
- W160967669 cites W2147774191 @default.
- W160967669 cites W2148606196 @default.
- W160967669 cites W2152935971 @default.
- W160967669 cites W2155843307 @default.
- W160967669 cites W2162147429 @default.
- W160967669 cites W2171707538 @default.
- W160967669 cites W2188883736 @default.
- W160967669 cites W2295382923 @default.
- W160967669 cites W2374660402 @default.
- W160967669 cites W2610881169 @default.
- W160967669 hasPublicationYear "2012" @default.
- W160967669 type Work @default.
- W160967669 sameAs 160967669 @default.
- W160967669 citedByCount "0" @default.
- W160967669 crossrefType "dissertation" @default.
- W160967669 hasAuthorship W160967669A5019733344 @default.
- W160967669 hasConcept C105795698 @default.
- W160967669 hasConcept C106301342 @default.
- W160967669 hasConcept C107457646 @default.
- W160967669 hasConcept C121332964 @default.
- W160967669 hasConcept C124101348 @default.
- W160967669 hasConcept C154945302 @default.
- W160967669 hasConcept C169760540 @default.
- W160967669 hasConcept C172367668 @default.
- W160967669 hasConcept C177264268 @default.
- W160967669 hasConcept C185578843 @default.
- W160967669 hasConcept C198104137 @default.
- W160967669 hasConcept C199360897 @default.
- W160967669 hasConcept C23123220 @default.
- W160967669 hasConcept C2522767166 @default.
- W160967669 hasConcept C26760741 @default.
- W160967669 hasConcept C33923547 @default.
- W160967669 hasConcept C36464697 @default.
- W160967669 hasConcept C41008148 @default.
- W160967669 hasConcept C52622258 @default.
- W160967669 hasConcept C62520636 @default.
- W160967669 hasConcept C76155785 @default.
- W160967669 hasConcept C86803240 @default.
- W160967669 hasConceptScore W160967669C105795698 @default.
- W160967669 hasConceptScore W160967669C106301342 @default.
- W160967669 hasConceptScore W160967669C107457646 @default.
- W160967669 hasConceptScore W160967669C121332964 @default.
- W160967669 hasConceptScore W160967669C124101348 @default.
- W160967669 hasConceptScore W160967669C154945302 @default.
- W160967669 hasConceptScore W160967669C169760540 @default.
- W160967669 hasConceptScore W160967669C172367668 @default.
- W160967669 hasConceptScore W160967669C177264268 @default.
- W160967669 hasConceptScore W160967669C185578843 @default.
- W160967669 hasConceptScore W160967669C198104137 @default.
- W160967669 hasConceptScore W160967669C199360897 @default.
- W160967669 hasConceptScore W160967669C23123220 @default.