Matches in SemOpenAlex for { <https://semopenalex.org/work/W1610525417> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W1610525417 endingPage "289" @default.
- W1610525417 startingPage "279" @default.
- W1610525417 abstract "The reconstruction of low dimension nonlinear behavior from the hydrologic time series has been an active area of research in the last decade. In this study, we present the applications of a powerful state space reconstruction methodology using the method of Support Vector Machines (SVM) to the Great Salt Lake (GSL) volume. SVMs are machine learning systems that use a hypothesis space of linear functions in a Kernel induced higher dimensional feature space. SVMs are optimized by minimizing a bound on a generalized error (risk) measure, rather than just the mean square error over a training set. The utility of this SVM regression approach is demonstrated through applications to the short term forecasts of the biweekly GSL volume. The SVM based reconstruction is used to develop time series forecasts for multiple lead times ranging from the period of two weeks to several months. The reliability of the algorithm in learning and forecasting the dynamics is tested using split sample sensitivity analyses, with a particular interest in forecasting extreme states. Unlike previously reported methodologies, SVMs are able to extract the dynamics using only a few past observed data points (Support Vectors, SV) out of the training examples. Considering statistical measures, the prediction model based on SVM demonstrated encouraging and promising results in a short-term prediction. Thus, the SVM method presented in this study suggests a competitive methodology for the forecast of hydrologic time series." @default.
- W1610525417 created "2016-06-24" @default.
- W1610525417 creator A5007032051 @default.
- W1610525417 creator A5019347107 @default.
- W1610525417 date "2006-01-01" @default.
- W1610525417 modified "2023-10-17" @default.
- W1610525417 title "Dynamic Nonlinear Prediction Model of Univariate Hydrologic Time Series Using the Support Vector Machine and State-Space Model" @default.
- W1610525417 hasPublicationYear "2006" @default.
- W1610525417 type Work @default.
- W1610525417 sameAs 1610525417 @default.
- W1610525417 citedByCount "0" @default.
- W1610525417 crossrefType "journal-article" @default.
- W1610525417 hasAuthorship W1610525417A5007032051 @default.
- W1610525417 hasAuthorship W1610525417A5019347107 @default.
- W1610525417 hasConcept C114614502 @default.
- W1610525417 hasConcept C119857082 @default.
- W1610525417 hasConcept C121332964 @default.
- W1610525417 hasConcept C12267149 @default.
- W1610525417 hasConcept C124101348 @default.
- W1610525417 hasConcept C151406439 @default.
- W1610525417 hasConcept C154945302 @default.
- W1610525417 hasConcept C158622935 @default.
- W1610525417 hasConcept C161584116 @default.
- W1610525417 hasConcept C199163554 @default.
- W1610525417 hasConcept C2779915298 @default.
- W1610525417 hasConcept C33923547 @default.
- W1610525417 hasConcept C41008148 @default.
- W1610525417 hasConcept C62520636 @default.
- W1610525417 hasConcept C74193536 @default.
- W1610525417 hasConcept C83665646 @default.
- W1610525417 hasConceptScore W1610525417C114614502 @default.
- W1610525417 hasConceptScore W1610525417C119857082 @default.
- W1610525417 hasConceptScore W1610525417C121332964 @default.
- W1610525417 hasConceptScore W1610525417C12267149 @default.
- W1610525417 hasConceptScore W1610525417C124101348 @default.
- W1610525417 hasConceptScore W1610525417C151406439 @default.
- W1610525417 hasConceptScore W1610525417C154945302 @default.
- W1610525417 hasConceptScore W1610525417C158622935 @default.
- W1610525417 hasConceptScore W1610525417C161584116 @default.
- W1610525417 hasConceptScore W1610525417C199163554 @default.
- W1610525417 hasConceptScore W1610525417C2779915298 @default.
- W1610525417 hasConceptScore W1610525417C33923547 @default.
- W1610525417 hasConceptScore W1610525417C41008148 @default.
- W1610525417 hasConceptScore W1610525417C62520636 @default.
- W1610525417 hasConceptScore W1610525417C74193536 @default.
- W1610525417 hasConceptScore W1610525417C83665646 @default.
- W1610525417 hasLocation W16105254171 @default.
- W1610525417 hasOpenAccess W1610525417 @default.
- W1610525417 hasPrimaryLocation W16105254171 @default.
- W1610525417 hasRelatedWork W1494264608 @default.
- W1610525417 hasRelatedWork W1543213871 @default.
- W1610525417 hasRelatedWork W1576793771 @default.
- W1610525417 hasRelatedWork W1970092360 @default.
- W1610525417 hasRelatedWork W1979242807 @default.
- W1610525417 hasRelatedWork W1992670555 @default.
- W1610525417 hasRelatedWork W2008664543 @default.
- W1610525417 hasRelatedWork W2016864600 @default.
- W1610525417 hasRelatedWork W2026375860 @default.
- W1610525417 hasRelatedWork W2039389092 @default.
- W1610525417 hasRelatedWork W2064432251 @default.
- W1610525417 hasRelatedWork W2079379563 @default.
- W1610525417 hasRelatedWork W2084227729 @default.
- W1610525417 hasRelatedWork W2114755535 @default.
- W1610525417 hasRelatedWork W2126387093 @default.
- W1610525417 hasRelatedWork W2259087662 @default.
- W1610525417 hasRelatedWork W2361866993 @default.
- W1610525417 hasRelatedWork W2564994884 @default.
- W1610525417 hasRelatedWork W2745070456 @default.
- W1610525417 hasRelatedWork W2906356283 @default.
- W1610525417 hasVolume "26" @default.
- W1610525417 isParatext "false" @default.
- W1610525417 isRetracted "false" @default.
- W1610525417 magId "1610525417" @default.
- W1610525417 workType "article" @default.