Matches in SemOpenAlex for { <https://semopenalex.org/work/W161231041> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W161231041 endingPage "257" @default.
- W161231041 startingPage "246" @default.
- W161231041 abstract "Texture analysis is one of the important steps in many computer vision applications. One of the important parts in texture analysis is texture classification. This classification is not an easy problem since texture can be non-uniform due to many reasons, e.g., rotation, scale, and etc. To help in this process, a good feature extraction method is needed. In this paper, we incorporate the fuzzy C-means (FCM) into the gray level co-occurrence matrix (GLCM). In particular, we utilize the result from FCM to compute eight fuzzy co-occurrence matrices for each direction. There are four features, i.e., contrast, correlation, energy, and homogeneity, computed from each fuzzy co-occurrence matrix. We then test our features with the multiclass support vector machine (one-versus-all strategy) on the UIUC, UMD, Kylberg, and the Brodatz data sets. We also compare the classification result using the same set of feature extracted from the GLCM. The experimental results show that the features extracted from our fuzzy co-occurrence matrix yields a better classification performance than that from the regular GLCM. The best results on validation set using the features computed from our fuzzy co-occurrence are 77%, 95%, 99.11%, and 98.44% on the UIUC, UMD, Kylberg, and Brodatz, respectively, whereas those on the same data sets using the features from the gray level co-occurrence are 53%, 85%, 82.81%, and 95.31%, respectively. The best result on the blind test set of Brodatz data set using our fuzzy co-occurrence is 92.19%, whereas that from the gray level co-occurrence is 85.74%. Since the blind test data set is a rotated version of the training data set, we may conclude from the experiment that our features provide better property of rotation invariance." @default.
- W161231041 created "2016-06-24" @default.
- W161231041 creator A5013485138 @default.
- W161231041 creator A5050853159 @default.
- W161231041 creator A5084209719 @default.
- W161231041 date "2013-01-01" @default.
- W161231041 modified "2023-09-25" @default.
- W161231041 title "A Novel Fuzzy Co-occurrence Matrix for Texture Feature Extraction" @default.
- W161231041 cites W1563088657 @default.
- W161231041 cites W1595925537 @default.
- W161231041 cites W1751255741 @default.
- W161231041 cites W1986270712 @default.
- W161231041 cites W1990368529 @default.
- W161231041 cites W2044465660 @default.
- W161231041 cites W2059432853 @default.
- W161231041 cites W2061434680 @default.
- W161231041 cites W2080608309 @default.
- W161231041 cites W2107317011 @default.
- W161231041 cites W2113076747 @default.
- W161231041 cites W2125027853 @default.
- W161231041 cites W2126833203 @default.
- W161231041 cites W2129158829 @default.
- W161231041 cites W2129739837 @default.
- W161231041 cites W2133890091 @default.
- W161231041 cites W2324538682 @default.
- W161231041 cites W2539858250 @default.
- W161231041 cites W4255443310 @default.
- W161231041 doi "https://doi.org/10.1007/978-3-642-39646-5_18" @default.
- W161231041 hasPublicationYear "2013" @default.
- W161231041 type Work @default.
- W161231041 sameAs 161231041 @default.
- W161231041 citedByCount "7" @default.
- W161231041 countsByYear W1612310412015 @default.
- W161231041 countsByYear W1612310412016 @default.
- W161231041 countsByYear W1612310412018 @default.
- W161231041 countsByYear W1612310412021 @default.
- W161231041 countsByYear W1612310412022 @default.
- W161231041 countsByYear W1612310412023 @default.
- W161231041 crossrefType "book-chapter" @default.
- W161231041 hasAuthorship W161231041A5013485138 @default.
- W161231041 hasAuthorship W161231041A5050853159 @default.
- W161231041 hasAuthorship W161231041A5084209719 @default.
- W161231041 hasConcept C106487976 @default.
- W161231041 hasConcept C115961682 @default.
- W161231041 hasConcept C117479156 @default.
- W161231041 hasConcept C12267149 @default.
- W161231041 hasConcept C153180895 @default.
- W161231041 hasConcept C154945302 @default.
- W161231041 hasConcept C159985019 @default.
- W161231041 hasConcept C192562407 @default.
- W161231041 hasConcept C27438332 @default.
- W161231041 hasConcept C2781195486 @default.
- W161231041 hasConcept C2985861186 @default.
- W161231041 hasConcept C33923547 @default.
- W161231041 hasConcept C41008148 @default.
- W161231041 hasConcept C42011625 @default.
- W161231041 hasConcept C52622490 @default.
- W161231041 hasConcept C58166 @default.
- W161231041 hasConcept C63099799 @default.
- W161231041 hasConcept C9417928 @default.
- W161231041 hasConceptScore W161231041C106487976 @default.
- W161231041 hasConceptScore W161231041C115961682 @default.
- W161231041 hasConceptScore W161231041C117479156 @default.
- W161231041 hasConceptScore W161231041C12267149 @default.
- W161231041 hasConceptScore W161231041C153180895 @default.
- W161231041 hasConceptScore W161231041C154945302 @default.
- W161231041 hasConceptScore W161231041C159985019 @default.
- W161231041 hasConceptScore W161231041C192562407 @default.
- W161231041 hasConceptScore W161231041C27438332 @default.
- W161231041 hasConceptScore W161231041C2781195486 @default.
- W161231041 hasConceptScore W161231041C2985861186 @default.
- W161231041 hasConceptScore W161231041C33923547 @default.
- W161231041 hasConceptScore W161231041C41008148 @default.
- W161231041 hasConceptScore W161231041C42011625 @default.
- W161231041 hasConceptScore W161231041C52622490 @default.
- W161231041 hasConceptScore W161231041C58166 @default.
- W161231041 hasConceptScore W161231041C63099799 @default.
- W161231041 hasConceptScore W161231041C9417928 @default.
- W161231041 hasLocation W1612310411 @default.
- W161231041 hasOpenAccess W161231041 @default.
- W161231041 hasPrimaryLocation W1612310411 @default.
- W161231041 hasRelatedWork W2068539145 @default.
- W161231041 hasRelatedWork W2126100045 @default.
- W161231041 hasRelatedWork W2132729794 @default.
- W161231041 hasRelatedWork W2150085486 @default.
- W161231041 hasRelatedWork W2241457321 @default.
- W161231041 hasRelatedWork W2336974148 @default.
- W161231041 hasRelatedWork W2372341413 @default.
- W161231041 hasRelatedWork W2386389214 @default.
- W161231041 hasRelatedWork W3004377704 @default.
- W161231041 hasRelatedWork W4225691219 @default.
- W161231041 isParatext "false" @default.
- W161231041 isRetracted "false" @default.
- W161231041 magId "161231041" @default.
- W161231041 workType "book-chapter" @default.