Matches in SemOpenAlex for { <https://semopenalex.org/work/W1614270630> ?p ?o ?g. }
- W1614270630 abstract "The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimonious Gaussian mixture models. The proposed DPPM models are Bayesian nonparametric parsimonious mixture models that allow to simultaneously infer the model parameters, the optimal number of mixture components and the optimal parsimonious mixture structure from the data. We develop a Gibbs sampling technique for maximum a posteriori (MAP) estimation of the developed DPMM models and provide a Bayesian model selection framework by using Bayes factors. We apply them to cluster simulated data and real data sets, and compare them to the standard parsimonious mixture models. The obtained results highlight the effectiveness of the proposed nonparametric parsimonious mixture models as a good nonparametric alternative for the parametric parsimonious models." @default.
- W1614270630 created "2016-06-24" @default.
- W1614270630 creator A5019826688 @default.
- W1614270630 creator A5020695688 @default.
- W1614270630 creator A5065837656 @default.
- W1614270630 date "2015-01-14" @default.
- W1614270630 modified "2023-10-18" @default.
- W1614270630 title "Dirichlet Process Parsimonious Mixtures for clustering" @default.
- W1614270630 cites W130037070 @default.
- W1614270630 cites W1511747216 @default.
- W1614270630 cites W1512438306 @default.
- W1614270630 cites W1551893515 @default.
- W1614270630 cites W1565709818 @default.
- W1614270630 cites W1573175260 @default.
- W1614270630 cites W1579271636 @default.
- W1614270630 cites W1582801283 @default.
- W1614270630 cites W1600310449 @default.
- W1614270630 cites W1922851081 @default.
- W1614270630 cites W194523672 @default.
- W1614270630 cites W195465510 @default.
- W1614270630 cites W1967687583 @default.
- W1614270630 cites W1975120776 @default.
- W1614270630 cites W1992402718 @default.
- W1614270630 cites W2001619934 @default.
- W1614270630 cites W2002418905 @default.
- W1614270630 cites W2011832962 @default.
- W1614270630 cites W2012084096 @default.
- W1614270630 cites W2044645601 @default.
- W1614270630 cites W2045656233 @default.
- W1614270630 cites W2049049032 @default.
- W1614270630 cites W2049633694 @default.
- W1614270630 cites W2050862984 @default.
- W1614270630 cites W2053218206 @default.
- W1614270630 cites W2060611171 @default.
- W1614270630 cites W2069429561 @default.
- W1614270630 cites W2071983892 @default.
- W1614270630 cites W2079501320 @default.
- W1614270630 cites W2080972498 @default.
- W1614270630 cites W2082503527 @default.
- W1614270630 cites W2089484716 @default.
- W1614270630 cites W2091797506 @default.
- W1614270630 cites W2096878708 @default.
- W1614270630 cites W2097348219 @default.
- W1614270630 cites W2106706098 @default.
- W1614270630 cites W2109820980 @default.
- W1614270630 cites W2111734525 @default.
- W1614270630 cites W2114915132 @default.
- W1614270630 cites W2115870554 @default.
- W1614270630 cites W2117853077 @default.
- W1614270630 cites W2118036030 @default.
- W1614270630 cites W2120636621 @default.
- W1614270630 cites W2126163471 @default.
- W1614270630 cites W2127498532 @default.
- W1614270630 cites W2142635246 @default.
- W1614270630 cites W2144675138 @default.
- W1614270630 cites W2152556736 @default.
- W1614270630 cites W2168175751 @default.
- W1614270630 cites W2168277610 @default.
- W1614270630 cites W2398130767 @default.
- W1614270630 cites W263845233 @default.
- W1614270630 cites W2913679241 @default.
- W1614270630 cites W3123857276 @default.
- W1614270630 cites W3140371941 @default.
- W1614270630 cites W3149745985 @default.
- W1614270630 cites W3145738572 @default.
- W1614270630 hasPublicationYear "2015" @default.
- W1614270630 type Work @default.
- W1614270630 sameAs 1614270630 @default.
- W1614270630 citedByCount "0" @default.
- W1614270630 crossrefType "posted-content" @default.
- W1614270630 hasAuthorship W1614270630A5019826688 @default.
- W1614270630 hasAuthorship W1614270630A5020695688 @default.
- W1614270630 hasAuthorship W1614270630A5065837656 @default.
- W1614270630 hasBestOaLocation W16142706303 @default.
- W1614270630 hasConcept C105795698 @default.
- W1614270630 hasConcept C107673813 @default.
- W1614270630 hasConcept C111919701 @default.
- W1614270630 hasConcept C134306372 @default.
- W1614270630 hasConcept C149782125 @default.
- W1614270630 hasConcept C154945302 @default.
- W1614270630 hasConcept C169214877 @default.
- W1614270630 hasConcept C171686336 @default.
- W1614270630 hasConcept C182310444 @default.
- W1614270630 hasConcept C2781280628 @default.
- W1614270630 hasConcept C33923547 @default.
- W1614270630 hasConcept C41008148 @default.
- W1614270630 hasConcept C500882744 @default.
- W1614270630 hasConcept C73555534 @default.
- W1614270630 hasConcept C98045186 @default.
- W1614270630 hasConceptScore W1614270630C105795698 @default.
- W1614270630 hasConceptScore W1614270630C107673813 @default.
- W1614270630 hasConceptScore W1614270630C111919701 @default.
- W1614270630 hasConceptScore W1614270630C134306372 @default.
- W1614270630 hasConceptScore W1614270630C149782125 @default.
- W1614270630 hasConceptScore W1614270630C154945302 @default.
- W1614270630 hasConceptScore W1614270630C169214877 @default.
- W1614270630 hasConceptScore W1614270630C171686336 @default.
- W1614270630 hasConceptScore W1614270630C182310444 @default.
- W1614270630 hasConceptScore W1614270630C2781280628 @default.
- W1614270630 hasConceptScore W1614270630C33923547 @default.