Matches in SemOpenAlex for { <https://semopenalex.org/work/W1614928522> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1614928522 abstract "The problem of symmetric rank-one approximation of symmetric tensors is important in Independent Components Analysis, also known as Blind Source Separation, as well as polynomial optimization. We analyze the symmetric rank-one approximation problem for symmetric tensors and derive several perturbation results. Given a symmetric rank-one tensor obscured by noise, we provide bounds on the accuracy of the best symmetric rank-one approximation for recovering the original rank-one structure, and we show that any eigenvector with sufficiently large eigenvalue is related to the rank-one structure as well. Further, we show that for high-dimensional symmetric approximately-rank-one tensors, the generalized Rayleigh quotient is mostly close to zero, so the best symmetric rank-one approximation corresponds to a prominent global extreme value. We show that each iteration of the Shifted Symmetric Higher Order Power Method (SS-HOPM), when applied to a rank-one symmetric tensor, moves towards the principal eigenvector for any input and shift parameter, under mild conditions. Finally, we explore the best choice of shift parameter for SS-HOPM to recover the principal eigenvector. We show that SS-HOPM is guaranteed to converge to an eigenvector of an approximately rank-one even-mode tensor for a wider choice of shift parameter than it is for a general symmetric tensor. We also show that the principal eigenvector is a stable fixed point of the SS-HOPM iteration for a wide range of shift parameters; together with a numerical experiment, these results lead to a non-obvious recommendation for shift parameter for the symmetric rank-one approximation problem." @default.
- W1614928522 created "2016-06-24" @default.
- W1614928522 creator A5043191986 @default.
- W1614928522 date "2011-10-03" @default.
- W1614928522 modified "2023-09-27" @default.
- W1614928522 title "On the rank-one approximation of symmetric tensors" @default.
- W1614928522 cites W1981973750 @default.
- W1614928522 cites W2002598080 @default.
- W1614928522 cites W2090208105 @default.
- W1614928522 cites W2090799283 @default.
- W1614928522 cites W2113722075 @default.
- W1614928522 cites W2122761035 @default.
- W1614928522 cites W3098015574 @default.
- W1614928522 cites W47600462 @default.
- W1614928522 hasPublicationYear "2011" @default.
- W1614928522 type Work @default.
- W1614928522 sameAs 1614928522 @default.
- W1614928522 citedByCount "0" @default.
- W1614928522 crossrefType "posted-content" @default.
- W1614928522 hasAuthorship W1614928522A5043191986 @default.
- W1614928522 hasConcept C101044782 @default.
- W1614928522 hasConcept C114614502 @default.
- W1614928522 hasConcept C121332964 @default.
- W1614928522 hasConcept C134306372 @default.
- W1614928522 hasConcept C155281189 @default.
- W1614928522 hasConcept C158693339 @default.
- W1614928522 hasConcept C164226766 @default.
- W1614928522 hasConcept C20178491 @default.
- W1614928522 hasConcept C202444582 @default.
- W1614928522 hasConcept C2778158742 @default.
- W1614928522 hasConcept C28826006 @default.
- W1614928522 hasConcept C33923547 @default.
- W1614928522 hasConcept C520416788 @default.
- W1614928522 hasConcept C52153879 @default.
- W1614928522 hasConcept C54848796 @default.
- W1614928522 hasConcept C62520636 @default.
- W1614928522 hasConcept C90119067 @default.
- W1614928522 hasConceptScore W1614928522C101044782 @default.
- W1614928522 hasConceptScore W1614928522C114614502 @default.
- W1614928522 hasConceptScore W1614928522C121332964 @default.
- W1614928522 hasConceptScore W1614928522C134306372 @default.
- W1614928522 hasConceptScore W1614928522C155281189 @default.
- W1614928522 hasConceptScore W1614928522C158693339 @default.
- W1614928522 hasConceptScore W1614928522C164226766 @default.
- W1614928522 hasConceptScore W1614928522C20178491 @default.
- W1614928522 hasConceptScore W1614928522C202444582 @default.
- W1614928522 hasConceptScore W1614928522C2778158742 @default.
- W1614928522 hasConceptScore W1614928522C28826006 @default.
- W1614928522 hasConceptScore W1614928522C33923547 @default.
- W1614928522 hasConceptScore W1614928522C520416788 @default.
- W1614928522 hasConceptScore W1614928522C52153879 @default.
- W1614928522 hasConceptScore W1614928522C54848796 @default.
- W1614928522 hasConceptScore W1614928522C62520636 @default.
- W1614928522 hasConceptScore W1614928522C90119067 @default.
- W1614928522 hasLocation W16149285221 @default.
- W1614928522 hasOpenAccess W1614928522 @default.
- W1614928522 hasPrimaryLocation W16149285221 @default.
- W1614928522 hasRelatedWork W2068019581 @default.
- W1614928522 hasRelatedWork W2076459794 @default.
- W1614928522 hasRelatedWork W2206271417 @default.
- W1614928522 hasRelatedWork W2332917886 @default.
- W1614928522 hasRelatedWork W2562116537 @default.
- W1614928522 hasRelatedWork W2921197080 @default.
- W1614928522 hasRelatedWork W2951460577 @default.
- W1614928522 hasRelatedWork W2963863416 @default.
- W1614928522 hasRelatedWork W3035045240 @default.
- W1614928522 hasRelatedWork W3100109894 @default.
- W1614928522 hasRelatedWork W3128401515 @default.
- W1614928522 hasRelatedWork W3132546328 @default.
- W1614928522 hasRelatedWork W3135310021 @default.
- W1614928522 hasRelatedWork W3135513863 @default.
- W1614928522 hasRelatedWork W3165874544 @default.
- W1614928522 hasRelatedWork W3213599981 @default.
- W1614928522 hasRelatedWork W3214539398 @default.
- W1614928522 hasRelatedWork W402235528 @default.
- W1614928522 hasRelatedWork W2072886135 @default.
- W1614928522 hasRelatedWork W3199455594 @default.
- W1614928522 isParatext "false" @default.
- W1614928522 isRetracted "false" @default.
- W1614928522 magId "1614928522" @default.
- W1614928522 workType "article" @default.