Matches in SemOpenAlex for { <https://semopenalex.org/work/W161594152> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W161594152 endingPage "157" @default.
- W161594152 startingPage "149" @default.
- W161594152 abstract "In the recent years, microblogging services, as Twitter, have become a popular tool for expressing feelings, opinions, broadcasting news, and communicating with friends. Twitter users produced more than 340 million tweets per day which may be consider a rich source of user information. We take a supervised approach to the problem, but leverage existing hashtags in Twitter for building our training data. Finally, we tested the Spanish emotional corpus applying two different machine learning algorithms for emotion identification reaching about 65% accuracy." @default.
- W161594152 created "2016-06-24" @default.
- W161594152 creator A5010377049 @default.
- W161594152 creator A5027498093 @default.
- W161594152 creator A5079499955 @default.
- W161594152 date "2013-01-01" @default.
- W161594152 modified "2023-09-27" @default.
- W161594152 title "Combining Machine Learning Techniques and Natural Language Processing to Infer Emotions Using Spanish Twitter Corpus" @default.
- W161594152 cites W1557043124 @default.
- W161594152 cites W1588539311 @default.
- W161594152 cites W1968951044 @default.
- W161594152 cites W1971222444 @default.
- W161594152 cites W2032254851 @default.
- W161594152 cites W2045854020 @default.
- W161594152 cites W2078833921 @default.
- W161594152 cites W2146111747 @default.
- W161594152 cites W2166706824 @default.
- W161594152 cites W2911336608 @default.
- W161594152 cites W4256441345 @default.
- W161594152 doi "https://doi.org/10.1007/978-3-642-38061-7_15" @default.
- W161594152 hasPublicationYear "2013" @default.
- W161594152 type Work @default.
- W161594152 sameAs 161594152 @default.
- W161594152 citedByCount "8" @default.
- W161594152 countsByYear W1615941522013 @default.
- W161594152 countsByYear W1615941522014 @default.
- W161594152 countsByYear W1615941522015 @default.
- W161594152 countsByYear W1615941522016 @default.
- W161594152 countsByYear W1615941522018 @default.
- W161594152 countsByYear W1615941522020 @default.
- W161594152 countsByYear W1615941522021 @default.
- W161594152 countsByYear W1615941522022 @default.
- W161594152 crossrefType "book-chapter" @default.
- W161594152 hasAuthorship W161594152A5010377049 @default.
- W161594152 hasAuthorship W161594152A5027498093 @default.
- W161594152 hasAuthorship W161594152A5079499955 @default.
- W161594152 hasBestOaLocation W1615941522 @default.
- W161594152 hasConcept C116834253 @default.
- W161594152 hasConcept C119857082 @default.
- W161594152 hasConcept C122980154 @default.
- W161594152 hasConcept C136764020 @default.
- W161594152 hasConcept C143275388 @default.
- W161594152 hasConcept C153083717 @default.
- W161594152 hasConcept C154945302 @default.
- W161594152 hasConcept C15744967 @default.
- W161594152 hasConcept C204321447 @default.
- W161594152 hasConcept C2522767166 @default.
- W161594152 hasConcept C41008148 @default.
- W161594152 hasConcept C518677369 @default.
- W161594152 hasConcept C59822182 @default.
- W161594152 hasConcept C66402592 @default.
- W161594152 hasConcept C77805123 @default.
- W161594152 hasConcept C86803240 @default.
- W161594152 hasConceptScore W161594152C116834253 @default.
- W161594152 hasConceptScore W161594152C119857082 @default.
- W161594152 hasConceptScore W161594152C122980154 @default.
- W161594152 hasConceptScore W161594152C136764020 @default.
- W161594152 hasConceptScore W161594152C143275388 @default.
- W161594152 hasConceptScore W161594152C153083717 @default.
- W161594152 hasConceptScore W161594152C154945302 @default.
- W161594152 hasConceptScore W161594152C15744967 @default.
- W161594152 hasConceptScore W161594152C204321447 @default.
- W161594152 hasConceptScore W161594152C2522767166 @default.
- W161594152 hasConceptScore W161594152C41008148 @default.
- W161594152 hasConceptScore W161594152C518677369 @default.
- W161594152 hasConceptScore W161594152C59822182 @default.
- W161594152 hasConceptScore W161594152C66402592 @default.
- W161594152 hasConceptScore W161594152C77805123 @default.
- W161594152 hasConceptScore W161594152C86803240 @default.
- W161594152 hasLocation W1615941521 @default.
- W161594152 hasLocation W1615941522 @default.
- W161594152 hasOpenAccess W161594152 @default.
- W161594152 hasPrimaryLocation W1615941521 @default.
- W161594152 hasRelatedWork W2252197266 @default.
- W161594152 hasRelatedWork W2267835966 @default.
- W161594152 hasRelatedWork W2412155161 @default.
- W161594152 hasRelatedWork W2558381261 @default.
- W161594152 hasRelatedWork W2785337750 @default.
- W161594152 hasRelatedWork W2890875777 @default.
- W161594152 hasRelatedWork W3049681097 @default.
- W161594152 hasRelatedWork W3191736742 @default.
- W161594152 hasRelatedWork W3201154085 @default.
- W161594152 hasRelatedWork W4245643476 @default.
- W161594152 isParatext "false" @default.
- W161594152 isRetracted "false" @default.
- W161594152 magId "161594152" @default.
- W161594152 workType "book-chapter" @default.