Matches in SemOpenAlex for { <https://semopenalex.org/work/W1616826450> ?p ?o ?g. }
Showing items 1 to 44 of
44
with 100 items per page.
- W1616826450 abstract "Let $G=(V, E)$ be a graph with $p$ vertices and $q$ edges. An acyclic graphoidal cover of $G$ is a collection $psi$ of paths in $G$ which are internally-disjoint and cover each edge of the graph exactly once. Let $f: Vrightarrow {1, 2, ldots, p}$ be a bijective labeling of the vertices of $G$. Let $uparrow!G_f$ be the directed graph obtained by orienting the edges $uv$ of $G$ from $u$ to $v$ provided $f(u)< f(v)$. If the set $psi_f$ of all maximal directed paths in $uparrow!G_f$, with directions ignored, is an acyclic graphoidal cover of $G$, then $f$ is called a emph{graphoidal labeling} of $G$ and $G$ is called a label graphoidal graph and $eta_l=min{|psi_f|: f {rm is a graphoidal labeling of} G}$ is called the label graphoidal covering number of $G$. In this paper we characterize graphs for which (i) $eta_l=q-m$, where $m$ is the number of vertices of degree 2 and (ii) $eta_l= q$. Also, we determine the value of label graphoidal covering number for unicyclic graphs." @default.
- W1616826450 created "2016-06-24" @default.
- W1616826450 creator A5016149763 @default.
- W1616826450 creator A5058291566 @default.
- W1616826450 date "2012-12-01" @default.
- W1616826450 modified "2023-09-25" @default.
- W1616826450 title "On label graphoidal covering number-I" @default.
- W1616826450 cites W2016186662 @default.
- W1616826450 cites W2021962931 @default.
- W1616826450 cites W2112641412 @default.
- W1616826450 cites W2487034343 @default.
- W1616826450 cites W2799004609 @default.
- W1616826450 cites W28257504 @default.
- W1616826450 hasPublicationYear "2012" @default.
- W1616826450 type Work @default.
- W1616826450 sameAs 1616826450 @default.
- W1616826450 citedByCount "1" @default.
- W1616826450 countsByYear W16168264502014 @default.
- W1616826450 crossrefType "journal-article" @default.
- W1616826450 hasAuthorship W1616826450A5016149763 @default.
- W1616826450 hasAuthorship W1616826450A5058291566 @default.
- W1616826450 hasConcept C105795698 @default.
- W1616826450 hasConcept C114614502 @default.
- W1616826450 hasConcept C33923547 @default.
- W1616826450 hasConceptScore W1616826450C105795698 @default.
- W1616826450 hasConceptScore W1616826450C114614502 @default.
- W1616826450 hasConceptScore W1616826450C33923547 @default.
- W1616826450 hasLocation W16168264501 @default.
- W1616826450 hasOpenAccess W1616826450 @default.
- W1616826450 hasPrimaryLocation W16168264501 @default.
- W1616826450 hasRelatedWork W1978042415 @default.
- W1616826450 hasRelatedWork W2017331178 @default.
- W1616826450 hasRelatedWork W2083542484 @default.
- W1616826450 hasRelatedWork W2119158312 @default.
- W1616826450 hasRelatedWork W2330407128 @default.
- W1616826450 hasRelatedWork W2552050053 @default.
- W1616826450 hasRelatedWork W2969635709 @default.
- W1616826450 hasRelatedWork W2976797620 @default.
- W1616826450 hasRelatedWork W3086542228 @default.
- W1616826450 hasRelatedWork W4234996786 @default.
- W1616826450 isParatext "false" @default.
- W1616826450 isRetracted "false" @default.
- W1616826450 magId "1616826450" @default.
- W1616826450 workType "article" @default.