Matches in SemOpenAlex for { <https://semopenalex.org/work/W1617135020> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1617135020 abstract "Velocity of data generation has increased over a period of decade which is expected to further increase exponentially with the passage of time. To mine the useful nuggets of information, satisfying a large community of users it is preferred to capture the interest of the user, i.e., to create a user profile, and then filter the content according to his taste. A user may traverse through a large number of documents, requiring a user profiling technique to support the scalability of growing number of documents. This paper proposes a novel technique of user profiling - Map Reduce based Vector Space Model (MR-VSM). MR-VSM is a technique for user profiling where the user interacts with data rich in text and volume. MR-VSM implements traditional VSM to use Map Reduce, a parallel programming paradigm to increase the computational efficiency and support scalability of documents. It works by parallelizing the task of creating a term-document class of VSM by using TF-IDF to create term vector. For experimental study this paper makes use of the News dataset which is rich in text and volume and is collected from the web using RSS feeds. The proposed system creates user profile by taking into consideration the News item read by the user and creating a term vector for each news item read. Resulting user profile is set of Top-n terms. To test the computational efficiency and scalability of MR-VSM for growing number of news items read by user, MR-VSM is made to run on a cluster of Hadoop for 12,000, 24,000 and 48000 news items. VSM is also run for 1,500 news items to show the computational efficiency of the proposed approach. It is observed that for MR-VSM computational time for user profiling and scalability of news item read by the user are improved with the increase in the number of nodes in a Hadoop cluster." @default.
- W1617135020 created "2016-06-24" @default.
- W1617135020 creator A5028611844 @default.
- W1617135020 creator A5080664700 @default.
- W1617135020 date "2015-08-01" @default.
- W1617135020 modified "2023-10-16" @default.
- W1617135020 title "MR-VSM: Map Reduce based vector Space Model for user profiling-an empirical study on News data" @default.
- W1617135020 cites W1662133657 @default.
- W1617135020 cites W1971345161 @default.
- W1617135020 cites W1972363744 @default.
- W1617135020 cites W1978394996 @default.
- W1617135020 cites W2114591822 @default.
- W1617135020 cites W2165612380 @default.
- W1617135020 doi "https://doi.org/10.1109/icacci.2015.7275635" @default.
- W1617135020 hasPublicationYear "2015" @default.
- W1617135020 type Work @default.
- W1617135020 sameAs 1617135020 @default.
- W1617135020 citedByCount "9" @default.
- W1617135020 countsByYear W16171350202017 @default.
- W1617135020 countsByYear W16171350202020 @default.
- W1617135020 countsByYear W16171350202021 @default.
- W1617135020 countsByYear W16171350202022 @default.
- W1617135020 countsByYear W16171350202023 @default.
- W1617135020 crossrefType "proceedings-article" @default.
- W1617135020 hasAuthorship W1617135020A5028611844 @default.
- W1617135020 hasAuthorship W1617135020A5080664700 @default.
- W1617135020 hasConcept C111919701 @default.
- W1617135020 hasConcept C124101348 @default.
- W1617135020 hasConcept C136764020 @default.
- W1617135020 hasConcept C187191949 @default.
- W1617135020 hasConcept C23123220 @default.
- W1617135020 hasConcept C2385561 @default.
- W1617135020 hasConcept C2780150774 @default.
- W1617135020 hasConcept C41008148 @default.
- W1617135020 hasConcept C48044578 @default.
- W1617135020 hasConcept C77088390 @default.
- W1617135020 hasConcept C89686163 @default.
- W1617135020 hasConceptScore W1617135020C111919701 @default.
- W1617135020 hasConceptScore W1617135020C124101348 @default.
- W1617135020 hasConceptScore W1617135020C136764020 @default.
- W1617135020 hasConceptScore W1617135020C187191949 @default.
- W1617135020 hasConceptScore W1617135020C23123220 @default.
- W1617135020 hasConceptScore W1617135020C2385561 @default.
- W1617135020 hasConceptScore W1617135020C2780150774 @default.
- W1617135020 hasConceptScore W1617135020C41008148 @default.
- W1617135020 hasConceptScore W1617135020C48044578 @default.
- W1617135020 hasConceptScore W1617135020C77088390 @default.
- W1617135020 hasConceptScore W1617135020C89686163 @default.
- W1617135020 hasLocation W16171350201 @default.
- W1617135020 hasOpenAccess W1617135020 @default.
- W1617135020 hasPrimaryLocation W16171350201 @default.
- W1617135020 hasRelatedWork W2103537161 @default.
- W1617135020 hasRelatedWork W2115040896 @default.
- W1617135020 hasRelatedWork W2166160394 @default.
- W1617135020 hasRelatedWork W2253863248 @default.
- W1617135020 hasRelatedWork W2372154248 @default.
- W1617135020 hasRelatedWork W2373031548 @default.
- W1617135020 hasRelatedWork W2374116733 @default.
- W1617135020 hasRelatedWork W2391220191 @default.
- W1617135020 hasRelatedWork W2470615246 @default.
- W1617135020 hasRelatedWork W2186075395 @default.
- W1617135020 isParatext "false" @default.
- W1617135020 isRetracted "false" @default.
- W1617135020 magId "1617135020" @default.
- W1617135020 workType "article" @default.