Matches in SemOpenAlex for { <https://semopenalex.org/work/W1617238219> ?p ?o ?g. }
- W1617238219 endingPage "175" @default.
- W1617238219 startingPage "168" @default.
- W1617238219 abstract "Many scenarios occurring in genomics and proteomics involve small number of labeled data and large number of variables. To create prediction models robust to overfitting variable selection is necessary. We propose variable selection method using nonlinear sparse component analysis with a reference representing either negative (healthy) or positive (cancer) class. Thereby, component comprised of cancer related variables is automatically inferred from the geometry of nonlinear mixture model with a reference. Proposed method is compared with 3 supervised and 2 unsupervised variable selection methods on two-class problems using 2 genomic and 2 proteomic datasets. Obtained results, which include analysis of biological relevance of selected genes, are comparable with those achieved by supervised methods. Thus, proposed method can possibly perform better on unseen data of the same cancer type." @default.
- W1617238219 created "2016-06-24" @default.
- W1617238219 creator A5025085047 @default.
- W1617238219 creator A5027665928 @default.
- W1617238219 creator A5064824381 @default.
- W1617238219 date "2015-01-01" @default.
- W1617238219 modified "2023-10-18" @default.
- W1617238219 title "Nonlinear Sparse Component Analysis with a Reference: Variable Selection in Genomics and Proteomics" @default.
- W1617238219 cites W1986075539 @default.
- W1617238219 cites W2016905587 @default.
- W1617238219 cites W2024861456 @default.
- W1617238219 cites W2067504539 @default.
- W1617238219 cites W2075371975 @default.
- W1617238219 cites W2087025987 @default.
- W1617238219 cites W2087684630 @default.
- W1617238219 cites W2092423825 @default.
- W1617238219 cites W2095571230 @default.
- W1617238219 cites W2100556411 @default.
- W1617238219 cites W2104608541 @default.
- W1617238219 cites W2111843227 @default.
- W1617238219 cites W2115358726 @default.
- W1617238219 cites W2125118959 @default.
- W1617238219 cites W2125512776 @default.
- W1617238219 cites W2134389439 @default.
- W1617238219 cites W2143426320 @default.
- W1617238219 cites W2153800196 @default.
- W1617238219 cites W2159400887 @default.
- W1617238219 cites W2165685007 @default.
- W1617238219 cites W2172300860 @default.
- W1617238219 doi "https://doi.org/10.1007/978-3-319-22482-4_19" @default.
- W1617238219 hasPublicationYear "2015" @default.
- W1617238219 type Work @default.
- W1617238219 sameAs 1617238219 @default.
- W1617238219 citedByCount "0" @default.
- W1617238219 crossrefType "book-chapter" @default.
- W1617238219 hasAuthorship W1617238219A5025085047 @default.
- W1617238219 hasAuthorship W1617238219A5027665928 @default.
- W1617238219 hasAuthorship W1617238219A5064824381 @default.
- W1617238219 hasConcept C104317684 @default.
- W1617238219 hasConcept C119857082 @default.
- W1617238219 hasConcept C121332964 @default.
- W1617238219 hasConcept C124101348 @default.
- W1617238219 hasConcept C134306372 @default.
- W1617238219 hasConcept C141231307 @default.
- W1617238219 hasConcept C148483581 @default.
- W1617238219 hasConcept C150194340 @default.
- W1617238219 hasConcept C153180895 @default.
- W1617238219 hasConcept C154945302 @default.
- W1617238219 hasConcept C158622935 @default.
- W1617238219 hasConcept C168167062 @default.
- W1617238219 hasConcept C182365436 @default.
- W1617238219 hasConcept C189206191 @default.
- W1617238219 hasConcept C22019652 @default.
- W1617238219 hasConcept C2777212361 @default.
- W1617238219 hasConcept C2984324147 @default.
- W1617238219 hasConcept C33923547 @default.
- W1617238219 hasConcept C41008148 @default.
- W1617238219 hasConcept C50644808 @default.
- W1617238219 hasConcept C55493867 @default.
- W1617238219 hasConcept C62520636 @default.
- W1617238219 hasConcept C81917197 @default.
- W1617238219 hasConcept C8415881 @default.
- W1617238219 hasConcept C86803240 @default.
- W1617238219 hasConcept C97355855 @default.
- W1617238219 hasConceptScore W1617238219C104317684 @default.
- W1617238219 hasConceptScore W1617238219C119857082 @default.
- W1617238219 hasConceptScore W1617238219C121332964 @default.
- W1617238219 hasConceptScore W1617238219C124101348 @default.
- W1617238219 hasConceptScore W1617238219C134306372 @default.
- W1617238219 hasConceptScore W1617238219C141231307 @default.
- W1617238219 hasConceptScore W1617238219C148483581 @default.
- W1617238219 hasConceptScore W1617238219C150194340 @default.
- W1617238219 hasConceptScore W1617238219C153180895 @default.
- W1617238219 hasConceptScore W1617238219C154945302 @default.
- W1617238219 hasConceptScore W1617238219C158622935 @default.
- W1617238219 hasConceptScore W1617238219C168167062 @default.
- W1617238219 hasConceptScore W1617238219C182365436 @default.
- W1617238219 hasConceptScore W1617238219C189206191 @default.
- W1617238219 hasConceptScore W1617238219C22019652 @default.
- W1617238219 hasConceptScore W1617238219C2777212361 @default.
- W1617238219 hasConceptScore W1617238219C2984324147 @default.
- W1617238219 hasConceptScore W1617238219C33923547 @default.
- W1617238219 hasConceptScore W1617238219C41008148 @default.
- W1617238219 hasConceptScore W1617238219C50644808 @default.
- W1617238219 hasConceptScore W1617238219C55493867 @default.
- W1617238219 hasConceptScore W1617238219C62520636 @default.
- W1617238219 hasConceptScore W1617238219C81917197 @default.
- W1617238219 hasConceptScore W1617238219C8415881 @default.
- W1617238219 hasConceptScore W1617238219C86803240 @default.
- W1617238219 hasConceptScore W1617238219C97355855 @default.
- W1617238219 hasLocation W16172382191 @default.
- W1617238219 hasOpenAccess W1617238219 @default.
- W1617238219 hasPrimaryLocation W16172382191 @default.
- W1617238219 hasRelatedWork W2202156486 @default.
- W1617238219 hasRelatedWork W2767651786 @default.
- W1617238219 hasRelatedWork W2963373297 @default.
- W1617238219 hasRelatedWork W2989932438 @default.
- W1617238219 hasRelatedWork W3011996705 @default.