Matches in SemOpenAlex for { <https://semopenalex.org/work/W1617724488> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W1617724488 endingPage "353" @default.
- W1617724488 startingPage "344" @default.
- W1617724488 abstract "We formulate a constrained 3-dimensional reader network planning (C3DRNP) problem.We propose a micro genetic algorithm (mGA) to solve the C3DRNP problem.The proposed mGA consists of novel spatial crossover and correction schemes.The obtained solution is guaranteed to achieve 100% tag coverage.The proposed mGA outperforms the particle swarm optimization method and conventional GA. Due to the fast growing electronic commerce, the constrained three-dimensional reader network planning (C3DRNP) of the radio frequency identification (RFID) system for large warehouses is a subject that is worthy of study. A micro genetic algorithm (mGA) with novel spatial crossover and correction schemes is proposed to cope with this C3DRNP problem. The proposed algorithm is computationally efficient, which allows a frequent replacement of the RFID readers in the network to account for the fast turnaround time of the stored objects in the warehouse, and guarantees 100% tag coverage to avoid missing the records of the objects.The proposed algorithm is tested and compared with the existing methods such as the particle swarm optimization (PSO) method and the conventional GA (CGA) on solving several C3DRNP problems with various network sizes. The comparison results demonstrate the computational efficiency of the mGA and the effectiveness of the novel spatial crossover and correction schemes in searching the solution." @default.
- W1617724488 created "2016-06-24" @default.
- W1617724488 creator A5005133790 @default.
- W1617724488 creator A5007322349 @default.
- W1617724488 date "2016-02-01" @default.
- W1617724488 modified "2023-09-24" @default.
- W1617724488 title "Micro genetic algorithm with spatial crossover and correction schemes for constrained three-dimensional reader network planning" @default.
- W1617724488 cites W1977854147 @default.
- W1617724488 cites W1992038773 @default.
- W1617724488 cites W2001579261 @default.
- W1617724488 cites W2022660417 @default.
- W1617724488 cites W2062647082 @default.
- W1617724488 cites W2071140122 @default.
- W1617724488 cites W2081465772 @default.
- W1617724488 cites W2083601119 @default.
- W1617724488 cites W2116107615 @default.
- W1617724488 cites W2158634449 @default.
- W1617724488 cites W2185869100 @default.
- W1617724488 cites W2333374558 @default.
- W1617724488 doi "https://doi.org/10.1016/j.eswa.2015.08.046" @default.
- W1617724488 hasPublicationYear "2016" @default.
- W1617724488 type Work @default.
- W1617724488 sameAs 1617724488 @default.
- W1617724488 citedByCount "10" @default.
- W1617724488 countsByYear W16177244882016 @default.
- W1617724488 countsByYear W16177244882017 @default.
- W1617724488 countsByYear W16177244882018 @default.
- W1617724488 countsByYear W16177244882019 @default.
- W1617724488 countsByYear W16177244882021 @default.
- W1617724488 countsByYear W16177244882022 @default.
- W1617724488 crossrefType "journal-article" @default.
- W1617724488 hasAuthorship W1617724488A5005133790 @default.
- W1617724488 hasAuthorship W1617724488A5007322349 @default.
- W1617724488 hasConcept C11413529 @default.
- W1617724488 hasConcept C119857082 @default.
- W1617724488 hasConcept C122507166 @default.
- W1617724488 hasConcept C126255220 @default.
- W1617724488 hasConcept C154945302 @default.
- W1617724488 hasConcept C33923547 @default.
- W1617724488 hasConcept C41008148 @default.
- W1617724488 hasConcept C8880873 @default.
- W1617724488 hasConceptScore W1617724488C11413529 @default.
- W1617724488 hasConceptScore W1617724488C119857082 @default.
- W1617724488 hasConceptScore W1617724488C122507166 @default.
- W1617724488 hasConceptScore W1617724488C126255220 @default.
- W1617724488 hasConceptScore W1617724488C154945302 @default.
- W1617724488 hasConceptScore W1617724488C33923547 @default.
- W1617724488 hasConceptScore W1617724488C41008148 @default.
- W1617724488 hasConceptScore W1617724488C8880873 @default.
- W1617724488 hasFunder F4320322795 @default.
- W1617724488 hasLocation W16177244881 @default.
- W1617724488 hasOpenAccess W1617724488 @default.
- W1617724488 hasPrimaryLocation W16177244881 @default.
- W1617724488 hasRelatedWork W1964508301 @default.
- W1617724488 hasRelatedWork W2126939445 @default.
- W1617724488 hasRelatedWork W2318009350 @default.
- W1617724488 hasRelatedWork W2359860614 @default.
- W1617724488 hasRelatedWork W2359871316 @default.
- W1617724488 hasRelatedWork W2380898791 @default.
- W1617724488 hasRelatedWork W2386411737 @default.
- W1617724488 hasRelatedWork W2387689044 @default.
- W1617724488 hasRelatedWork W3083279819 @default.
- W1617724488 hasRelatedWork W65797845 @default.
- W1617724488 hasVolume "44" @default.
- W1617724488 isParatext "false" @default.
- W1617724488 isRetracted "false" @default.
- W1617724488 magId "1617724488" @default.
- W1617724488 workType "article" @default.