Matches in SemOpenAlex for { <https://semopenalex.org/work/W1618383215> ?p ?o ?g. }
- W1618383215 endingPage "29" @default.
- W1618383215 startingPage "17" @default.
- W1618383215 abstract "Tropical dry forests (TDFs) in the Americas are considered the first frontier of economic development with less than 1% of their total original coverage under protection. Accordingly, accurate estimates of their spatial extent, fragmentation, and degree of regeneration are critical in evaluating the success of current conservation policies. This study focused on a well-protected secondary TDF in Santa Rosa National Park (SRNP) Environmental Monitoring Super Site, Guanacaste, Costa Rica. We used spectral signature analysis of TDF ecosystem succession (early, intermediate, and late successional stages), and its intrinsic variability, to propose a new multiple criteria spectral mixture analysis (MCSMA) method on the shortwave infrared (SWIR) of HyMap image. Unlike most existing iterative mixture analysis (IMA) techniques, MCSMA tries to extract and make use of representative endmembers with spectral and spatial information. MCSMA then considers three criteria that influence the comparative importance of different endmember combinations (endmember models): root mean square error (RMSE); spatial distance (SD); and fraction consistency (FC), to create an evaluation framework to select a best-fit model. The spectral analysis demonstrated that TDFs have a high spectral variability as a result of biomass variability. By adopting two search strategies, the unmixing results showed that our new MCSMA approach had a better performance in root mean square error (early: 0.160/0.159; intermediate: 0.322/0.321; and late: 0.239/0.235); mean absolute error (early: 0.132/0.128; intermediate: 0.254/0.251; and late: 0.191/0.188); and systematic error (early: 0.045/0.055; intermediate: −0.211/−0.214; and late: 0.161/0.160), compared to the multiple endmember spectral mixture analysis (MESMA). This study highlights the importance of SWIR in differentiating successional stages in TDFs. The proposed MCSMA provides a more flexible and generalized means for the best-fit model determination than common IMA methods." @default.
- W1618383215 created "2016-06-24" @default.
- W1618383215 creator A5001892411 @default.
- W1618383215 creator A5016528249 @default.
- W1618383215 creator A5049190676 @default.
- W1618383215 creator A5073670196 @default.
- W1618383215 creator A5082229395 @default.
- W1618383215 creator A5085354078 @default.
- W1618383215 date "2015-11-01" @default.
- W1618383215 modified "2023-09-29" @default.
- W1618383215 title "Mapping tropical dry forest succession using multiple criteria spectral mixture analysis" @default.
- W1618383215 cites W1963772737 @default.
- W1618383215 cites W1967876699 @default.
- W1618383215 cites W1970357698 @default.
- W1618383215 cites W1972293418 @default.
- W1618383215 cites W2001076865 @default.
- W1618383215 cites W2013328968 @default.
- W1618383215 cites W2015502627 @default.
- W1618383215 cites W2018027183 @default.
- W1618383215 cites W2025330625 @default.
- W1618383215 cites W2025389829 @default.
- W1618383215 cites W2026332487 @default.
- W1618383215 cites W2027157694 @default.
- W1618383215 cites W2029144047 @default.
- W1618383215 cites W2029987871 @default.
- W1618383215 cites W2038485292 @default.
- W1618383215 cites W2046404979 @default.
- W1618383215 cites W2046875527 @default.
- W1618383215 cites W2050917502 @default.
- W1618383215 cites W2054512836 @default.
- W1618383215 cites W2054851127 @default.
- W1618383215 cites W2056254247 @default.
- W1618383215 cites W2056418346 @default.
- W1618383215 cites W2057944383 @default.
- W1618383215 cites W2060147006 @default.
- W1618383215 cites W2060440967 @default.
- W1618383215 cites W2062056202 @default.
- W1618383215 cites W2064552842 @default.
- W1618383215 cites W2071059534 @default.
- W1618383215 cites W2076530741 @default.
- W1618383215 cites W2079615115 @default.
- W1618383215 cites W2080467868 @default.
- W1618383215 cites W2083190453 @default.
- W1618383215 cites W2083933193 @default.
- W1618383215 cites W2087375739 @default.
- W1618383215 cites W2087964169 @default.
- W1618383215 cites W2088551744 @default.
- W1618383215 cites W2088603520 @default.
- W1618383215 cites W2089458048 @default.
- W1618383215 cites W2089882657 @default.
- W1618383215 cites W2092431075 @default.
- W1618383215 cites W2098057602 @default.
- W1618383215 cites W2098149888 @default.
- W1618383215 cites W2098757594 @default.
- W1618383215 cites W2101267413 @default.
- W1618383215 cites W2102751363 @default.
- W1618383215 cites W2107742627 @default.
- W1618383215 cites W2110254018 @default.
- W1618383215 cites W2110456190 @default.
- W1618383215 cites W2111402980 @default.
- W1618383215 cites W2117671957 @default.
- W1618383215 cites W2123907688 @default.
- W1618383215 cites W2127124878 @default.
- W1618383215 cites W2136635809 @default.
- W1618383215 cites W2138341617 @default.
- W1618383215 cites W2140362063 @default.
- W1618383215 cites W2143185985 @default.
- W1618383215 cites W2144535551 @default.
- W1618383215 cites W2144881411 @default.
- W1618383215 cites W2145340043 @default.
- W1618383215 cites W2147258346 @default.
- W1618383215 cites W2153084905 @default.
- W1618383215 cites W2155510990 @default.
- W1618383215 cites W2156220628 @default.
- W1618383215 cites W2158968188 @default.
- W1618383215 cites W2172063876 @default.
- W1618383215 cites W2272473773 @default.
- W1618383215 cites W2330782696 @default.
- W1618383215 cites W4302564868 @default.
- W1618383215 doi "https://doi.org/10.1016/j.isprsjprs.2015.08.009" @default.
- W1618383215 hasPublicationYear "2015" @default.
- W1618383215 type Work @default.
- W1618383215 sameAs 1618383215 @default.
- W1618383215 citedByCount "28" @default.
- W1618383215 countsByYear W16183832152016 @default.
- W1618383215 countsByYear W16183832152017 @default.
- W1618383215 countsByYear W16183832152018 @default.
- W1618383215 countsByYear W16183832152019 @default.
- W1618383215 countsByYear W16183832152020 @default.
- W1618383215 countsByYear W16183832152021 @default.
- W1618383215 countsByYear W16183832152022 @default.
- W1618383215 countsByYear W16183832152023 @default.
- W1618383215 crossrefType "journal-article" @default.
- W1618383215 hasAuthorship W1618383215A5001892411 @default.
- W1618383215 hasAuthorship W1618383215A5016528249 @default.
- W1618383215 hasAuthorship W1618383215A5049190676 @default.
- W1618383215 hasAuthorship W1618383215A5073670196 @default.
- W1618383215 hasAuthorship W1618383215A5082229395 @default.