Matches in SemOpenAlex for { <https://semopenalex.org/work/W162023102> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W162023102 abstract "In recent years, random projection has been used as a valuable tool for performing dimensionality reduction of high dimensional data. Starting with the seminal work of Johnson and Lindenstrauss [8], a number of interesting implementations of the random projection techniques have been proposed for dimensionality reduction. These techniques are mostly space symmetric random projections in which random hyperplanes are sampled in order to construct the projection. While these methods can provide effective reductions with worst-case bounds, they are not sensitive to the fact that the underlying data may have much lower implicit dimensionality than the full dimensionality. This may often be the case in many real applications. In this work, we analyze the theoretical effectiveness of point sampled random projections, in which the sampled hyperplanes are defined in terms of points sampled from the data. We show that point sampled random projections can be significantly more effective in most data sets, since the implicit dimensionality is usually significantly lower than the full dimensionality. In pathological cases, where space sampled random projections are better, it is possible to use a mixture of the two methods to design a random projection method with excellent average case behavior, while retaining the worst case behavior of space sampled random projections.MSC codesDimensionality ReductionRandom Projection" @default.
- W162023102 created "2016-06-24" @default.
- W162023102 creator A5028089542 @default.
- W162023102 date "2007-04-26" @default.
- W162023102 modified "2023-09-25" @default.
- W162023102 title "On Point Sampling versus Space Sampling for Dimensionality Reduction" @default.
- W162023102 cites W1595303882 @default.
- W162023102 cites W2003552078 @default.
- W162023102 cites W2053171205 @default.
- W162023102 cites W2063392856 @default.
- W162023102 cites W2084481683 @default.
- W162023102 cites W2089497633 @default.
- W162023102 cites W2147717514 @default.
- W162023102 cites W2148694408 @default.
- W162023102 cites W2167081989 @default.
- W162023102 doi "https://doi.org/10.1137/1.9781611972771.18" @default.
- W162023102 hasPublicationYear "2007" @default.
- W162023102 type Work @default.
- W162023102 sameAs 162023102 @default.
- W162023102 citedByCount "0" @default.
- W162023102 crossrefType "proceedings-article" @default.
- W162023102 hasAuthorship W162023102A5028089542 @default.
- W162023102 hasBestOaLocation W1620231021 @default.
- W162023102 hasConcept C105795698 @default.
- W162023102 hasConcept C106131492 @default.
- W162023102 hasConcept C111030470 @default.
- W162023102 hasConcept C11413529 @default.
- W162023102 hasConcept C114614502 @default.
- W162023102 hasConcept C130402806 @default.
- W162023102 hasConcept C140779682 @default.
- W162023102 hasConcept C154945302 @default.
- W162023102 hasConcept C21080849 @default.
- W162023102 hasConcept C2524010 @default.
- W162023102 hasConcept C2777036070 @default.
- W162023102 hasConcept C28719098 @default.
- W162023102 hasConcept C31972630 @default.
- W162023102 hasConcept C33923547 @default.
- W162023102 hasConcept C41008148 @default.
- W162023102 hasConcept C57493831 @default.
- W162023102 hasConcept C68693459 @default.
- W162023102 hasConcept C70518039 @default.
- W162023102 hasConceptScore W162023102C105795698 @default.
- W162023102 hasConceptScore W162023102C106131492 @default.
- W162023102 hasConceptScore W162023102C111030470 @default.
- W162023102 hasConceptScore W162023102C11413529 @default.
- W162023102 hasConceptScore W162023102C114614502 @default.
- W162023102 hasConceptScore W162023102C130402806 @default.
- W162023102 hasConceptScore W162023102C140779682 @default.
- W162023102 hasConceptScore W162023102C154945302 @default.
- W162023102 hasConceptScore W162023102C21080849 @default.
- W162023102 hasConceptScore W162023102C2524010 @default.
- W162023102 hasConceptScore W162023102C2777036070 @default.
- W162023102 hasConceptScore W162023102C28719098 @default.
- W162023102 hasConceptScore W162023102C31972630 @default.
- W162023102 hasConceptScore W162023102C33923547 @default.
- W162023102 hasConceptScore W162023102C41008148 @default.
- W162023102 hasConceptScore W162023102C57493831 @default.
- W162023102 hasConceptScore W162023102C68693459 @default.
- W162023102 hasConceptScore W162023102C70518039 @default.
- W162023102 hasLocation W1620231021 @default.
- W162023102 hasOpenAccess W162023102 @default.
- W162023102 hasPrimaryLocation W1620231021 @default.
- W162023102 hasRelatedWork W162023102 @default.
- W162023102 hasRelatedWork W2064168458 @default.
- W162023102 hasRelatedWork W2089497633 @default.
- W162023102 hasRelatedWork W2141406155 @default.
- W162023102 hasRelatedWork W2161722909 @default.
- W162023102 hasRelatedWork W2245231753 @default.
- W162023102 hasRelatedWork W3015962327 @default.
- W162023102 hasRelatedWork W3107411318 @default.
- W162023102 hasRelatedWork W3189024743 @default.
- W162023102 hasRelatedWork W2611813480 @default.
- W162023102 isParatext "false" @default.
- W162023102 isRetracted "false" @default.
- W162023102 magId "162023102" @default.
- W162023102 workType "article" @default.