Matches in SemOpenAlex for { <https://semopenalex.org/work/W1622236431> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W1622236431 startingPage "282" @default.
- W1622236431 abstract "Neural networks can be trained to model the sediment-discharge relationship: numerous illustrative applications exist. The standard method of reporting involves using a scatterplot of observed versus predicted records, plus a handful of global statistics, to support an assessment of model skill. This traditional approach will nevertheless result in undesirable side effects since it reinforces the ’black box’ criticisms and associated demonisation that is sometimes levelled at computational intelligence solutions: no ’line-of-best-fit’ is ever supplied. This paper in contrast compares and evaluates six computational methods for modelling the sediment-discharge relationship from a structural and behavioural standpoint in which the exact nature of each model is visualised for the purposes of diagnostic appraisal and scientific enlightenment. The following methods are compared: backpropagation neural network; corrected power function; simple linear regression; piecewise linear regression using an M5 Model Tree; LOWESS; and Robust LOWESS. Modelling is restricted to a consideration of bivariate relationships. The models were developed on daily river discharge and sediment concentration datasets for two rivers in Missouri: Lower Salt River and Little Black River. Each dataset was divided into two parts using different methods and each model was first calibrated on one sub-set and thereafter tested on the other. The datasets were next swapped over and the process repeated. Each model is also evaluated using statistical measures calculated in HydroTest (http://www.hydrotest.org.uk/). The need for more benchmarking exercises of a similar nature is highlighted." @default.
- W1622236431 created "2016-06-24" @default.
- W1622236431 creator A5024990919 @default.
- W1622236431 creator A5038096667 @default.
- W1622236431 creator A5049969849 @default.
- W1622236431 date "2009-04-01" @default.
- W1622236431 modified "2023-09-22" @default.
- W1622236431 title "Neural network modelling of sediment-discharge relationships: Pictorial analysis of six computational methodologies applied to two rivers in Missouri" @default.
- W1622236431 hasPublicationYear "2009" @default.
- W1622236431 type Work @default.
- W1622236431 sameAs 1622236431 @default.
- W1622236431 citedByCount "0" @default.
- W1622236431 crossrefType "journal-article" @default.
- W1622236431 hasAuthorship W1622236431A5024990919 @default.
- W1622236431 hasAuthorship W1622236431A5038096667 @default.
- W1622236431 hasAuthorship W1622236431A5049969849 @default.
- W1622236431 hasConcept C105795698 @default.
- W1622236431 hasConcept C119857082 @default.
- W1622236431 hasConcept C124101348 @default.
- W1622236431 hasConcept C144133560 @default.
- W1622236431 hasConcept C154945302 @default.
- W1622236431 hasConcept C155032097 @default.
- W1622236431 hasConcept C162853370 @default.
- W1622236431 hasConcept C177264268 @default.
- W1622236431 hasConcept C199360897 @default.
- W1622236431 hasConcept C33923547 @default.
- W1622236431 hasConcept C41008148 @default.
- W1622236431 hasConcept C50644808 @default.
- W1622236431 hasConcept C64341305 @default.
- W1622236431 hasConcept C86251818 @default.
- W1622236431 hasConceptScore W1622236431C105795698 @default.
- W1622236431 hasConceptScore W1622236431C119857082 @default.
- W1622236431 hasConceptScore W1622236431C124101348 @default.
- W1622236431 hasConceptScore W1622236431C144133560 @default.
- W1622236431 hasConceptScore W1622236431C154945302 @default.
- W1622236431 hasConceptScore W1622236431C155032097 @default.
- W1622236431 hasConceptScore W1622236431C162853370 @default.
- W1622236431 hasConceptScore W1622236431C177264268 @default.
- W1622236431 hasConceptScore W1622236431C199360897 @default.
- W1622236431 hasConceptScore W1622236431C33923547 @default.
- W1622236431 hasConceptScore W1622236431C41008148 @default.
- W1622236431 hasConceptScore W1622236431C50644808 @default.
- W1622236431 hasConceptScore W1622236431C64341305 @default.
- W1622236431 hasConceptScore W1622236431C86251818 @default.
- W1622236431 hasLocation W16222364311 @default.
- W1622236431 hasOpenAccess W1622236431 @default.
- W1622236431 hasPrimaryLocation W16222364311 @default.
- W1622236431 hasRelatedWork W1508403367 @default.
- W1622236431 hasRelatedWork W1521723055 @default.
- W1622236431 hasRelatedWork W1580840182 @default.
- W1622236431 hasRelatedWork W1596051490 @default.
- W1622236431 hasRelatedWork W1599300385 @default.
- W1622236431 hasRelatedWork W1970276632 @default.
- W1622236431 hasRelatedWork W1973010432 @default.
- W1622236431 hasRelatedWork W1990738922 @default.
- W1622236431 hasRelatedWork W2016387257 @default.
- W1622236431 hasRelatedWork W2036023061 @default.
- W1622236431 hasRelatedWork W2042963688 @default.
- W1622236431 hasRelatedWork W2114866548 @default.
- W1622236431 hasRelatedWork W2120917074 @default.
- W1622236431 hasRelatedWork W2148270173 @default.
- W1622236431 hasRelatedWork W2153857679 @default.
- W1622236431 hasRelatedWork W2369448240 @default.
- W1622236431 hasRelatedWork W2615761890 @default.
- W1622236431 hasRelatedWork W315774001 @default.
- W1622236431 hasRelatedWork W1903160133 @default.
- W1622236431 hasRelatedWork W2255910632 @default.
- W1622236431 isParatext "false" @default.
- W1622236431 isRetracted "false" @default.
- W1622236431 magId "1622236431" @default.
- W1622236431 workType "article" @default.