Matches in SemOpenAlex for { <https://semopenalex.org/work/W1623615678> ?p ?o ?g. }
- W1623615678 abstract "When training machine classifiers, to replace hard classification targets by emphasized soft versions of them helps to reduce the negative effects of using standard cost functions as approximations to misclassification rates. This emphasis has the same kind of effect as sample editing methods, that have proved to be effective for improving classifiers performance. In this paper, we explore the effectiveness of using emphasized soft targets with generative models, such as Gaussian MixtureModels (GMM), and Gaussian Processes (GP). The interest of using GMMis that they offer advantages such as an easy interpretation and straightforward possibilities to deal with missing values. With respect to GP, if we use soft targets, we do not need to resort to any complex approximation to get a Gaussian Process classifier and, simultaneously, we can obtain the advantages provided by the use of an emphasis. Simulation results support the usefulness of the proposed approach to get better performance and show a low sensitivity to design parameters selection." @default.
- W1623615678 created "2016-06-24" @default.
- W1623615678 creator A5034695225 @default.
- W1623615678 creator A5046532092 @default.
- W1623615678 creator A5058365794 @default.
- W1623615678 date "2009-01-01" @default.
- W1623615678 modified "2023-09-24" @default.
- W1623615678 title "Designing Model Based Classifiers by Emphasizing Soft Targets" @default.
- W1623615678 cites W1506806321 @default.
- W1623615678 cites W1515272691 @default.
- W1623615678 cites W1746819321 @default.
- W1623615678 cites W188554010 @default.
- W1623615678 cites W1905898145 @default.
- W1623615678 cites W1934021597 @default.
- W1623615678 cites W1974124783 @default.
- W1623615678 cites W1994410331 @default.
- W1623615678 cites W1996977322 @default.
- W1623615678 cites W2001619934 @default.
- W1623615678 cites W2023262455 @default.
- W1623615678 cites W2025653905 @default.
- W1623615678 cites W2028590934 @default.
- W1623615678 cites W2032210760 @default.
- W1623615678 cites W2040870580 @default.
- W1623615678 cites W2074606547 @default.
- W1623615678 cites W2087347434 @default.
- W1623615678 cites W2090293612 @default.
- W1623615678 cites W2092530862 @default.
- W1623615678 cites W2095955281 @default.
- W1623615678 cites W2097477220 @default.
- W1623615678 cites W2099768828 @default.
- W1623615678 cites W2107386393 @default.
- W1623615678 cites W2108995755 @default.
- W1623615678 cites W2109703216 @default.
- W1623615678 cites W2112076978 @default.
- W1623615678 cites W2113853244 @default.
- W1623615678 cites W2117063635 @default.
- W1623615678 cites W2117812871 @default.
- W1623615678 cites W2119821739 @default.
- W1623615678 cites W2125679713 @default.
- W1623615678 cites W2127928018 @default.
- W1623615678 cites W2128973832 @default.
- W1623615678 cites W2132407367 @default.
- W1623615678 cites W2133721713 @default.
- W1623615678 cites W2135995262 @default.
- W1623615678 cites W2136725480 @default.
- W1623615678 cites W2147993235 @default.
- W1623615678 cites W2159540571 @default.
- W1623615678 cites W2166856932 @default.
- W1623615678 cites W2169359910 @default.
- W1623615678 cites W26791781 @default.
- W1623615678 doi "https://doi.org/10.3233/fi-2009-186" @default.
- W1623615678 hasPublicationYear "2009" @default.
- W1623615678 type Work @default.
- W1623615678 sameAs 1623615678 @default.
- W1623615678 citedByCount "5" @default.
- W1623615678 countsByYear W16236156782015 @default.
- W1623615678 countsByYear W16236156782018 @default.
- W1623615678 countsByYear W16236156782020 @default.
- W1623615678 crossrefType "journal-article" @default.
- W1623615678 hasAuthorship W1623615678A5034695225 @default.
- W1623615678 hasAuthorship W1623615678A5046532092 @default.
- W1623615678 hasAuthorship W1623615678A5058365794 @default.
- W1623615678 hasConcept C111919701 @default.
- W1623615678 hasConcept C119857082 @default.
- W1623615678 hasConcept C121332964 @default.
- W1623615678 hasConcept C127413603 @default.
- W1623615678 hasConcept C153180895 @default.
- W1623615678 hasConcept C154945302 @default.
- W1623615678 hasConcept C163716315 @default.
- W1623615678 hasConcept C167966045 @default.
- W1623615678 hasConcept C21200559 @default.
- W1623615678 hasConcept C24326235 @default.
- W1623615678 hasConcept C39890363 @default.
- W1623615678 hasConcept C41008148 @default.
- W1623615678 hasConcept C61326573 @default.
- W1623615678 hasConcept C62520636 @default.
- W1623615678 hasConcept C95623464 @default.
- W1623615678 hasConcept C98045186 @default.
- W1623615678 hasConceptScore W1623615678C111919701 @default.
- W1623615678 hasConceptScore W1623615678C119857082 @default.
- W1623615678 hasConceptScore W1623615678C121332964 @default.
- W1623615678 hasConceptScore W1623615678C127413603 @default.
- W1623615678 hasConceptScore W1623615678C153180895 @default.
- W1623615678 hasConceptScore W1623615678C154945302 @default.
- W1623615678 hasConceptScore W1623615678C163716315 @default.
- W1623615678 hasConceptScore W1623615678C167966045 @default.
- W1623615678 hasConceptScore W1623615678C21200559 @default.
- W1623615678 hasConceptScore W1623615678C24326235 @default.
- W1623615678 hasConceptScore W1623615678C39890363 @default.
- W1623615678 hasConceptScore W1623615678C41008148 @default.
- W1623615678 hasConceptScore W1623615678C61326573 @default.
- W1623615678 hasConceptScore W1623615678C62520636 @default.
- W1623615678 hasConceptScore W1623615678C95623464 @default.
- W1623615678 hasConceptScore W1623615678C98045186 @default.
- W1623615678 hasLocation W16236156781 @default.
- W1623615678 hasOpenAccess W1623615678 @default.
- W1623615678 hasPrimaryLocation W16236156781 @default.
- W1623615678 hasRelatedWork W1558119254 @default.
- W1623615678 hasRelatedWork W178408674 @default.
- W1623615678 hasRelatedWork W1888820865 @default.