Matches in SemOpenAlex for { <https://semopenalex.org/work/W1625253008> ?p ?o ?g. }
- W1625253008 endingPage "855" @default.
- W1625253008 startingPage "846" @default.
- W1625253008 abstract "Abstract Comparison of demo‐genetic models using Approximate Bayesian Computation (ABC) is an active research field. Although large numbers of populations and models (i.e. scenarios) can be analysed with ABC using molecular data obtained from various marker types, methodological and computational issues arise when these numbers become too large. Moreover, Robert et al. ( Proceedings of the National Academy of Sciences of the United States of America , 2011, 108, 15112) have shown that the conclusions drawn on ABC model comparison cannot be trusted per se and required additional simulation analyses. Monte Carlo inferential techniques to empirically evaluate confidence in scenario choice are very time‐consuming, however, when the numbers of summary statistics (Ss) and scenarios are large. We here describe a methodological innovation to process efficient ABC scenario probability computation using linear discriminant analysis (LDA) on Ss before computing logistic regression. We used simulated pseudo‐observed data sets ( pods ) to assess the main features of the method (precision and computation time) in comparison with traditional probability estimation using raw (i.e. not LDA transformed) Ss. We also illustrate the method on real microsatellite data sets produced to make inferences about the invasion routes of the coccinelid Harmonia axyridis . We found that scenario probabilities computed from LDA‐transformed and raw Ss were strongly correlated. Type I and II errors were similar for both methods. The faster probability computation that we observed (speed gain around a factor of 100 for LDA‐transformed Ss) substantially increases the ability of ABC practitioners to analyse large numbers of pods and hence provides a manageable way to empirically evaluate the power available to discriminate among a large set of complex scenarios." @default.
- W1625253008 created "2016-06-24" @default.
- W1625253008 creator A5004966934 @default.
- W1625253008 creator A5019671078 @default.
- W1625253008 creator A5028873129 @default.
- W1625253008 creator A5032245151 @default.
- W1625253008 creator A5033156491 @default.
- W1625253008 creator A5056158848 @default.
- W1625253008 creator A5091368168 @default.
- W1625253008 date "2012-05-09" @default.
- W1625253008 modified "2023-10-18" @default.
- W1625253008 title "Estimation of demo‐genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics" @default.
- W1625253008 cites W1594863551 @default.
- W1625253008 cites W1921017438 @default.
- W1625253008 cites W1964735403 @default.
- W1625253008 cites W1965175390 @default.
- W1625253008 cites W1980041208 @default.
- W1625253008 cites W2001619934 @default.
- W1625253008 cites W2034795216 @default.
- W1625253008 cites W2044507754 @default.
- W1625253008 cites W2052195764 @default.
- W1625253008 cites W2067392831 @default.
- W1625253008 cites W2070335941 @default.
- W1625253008 cites W2075060430 @default.
- W1625253008 cites W2086827484 @default.
- W1625253008 cites W2091270241 @default.
- W1625253008 cites W2101012832 @default.
- W1625253008 cites W2101168080 @default.
- W1625253008 cites W2109606780 @default.
- W1625253008 cites W2110065044 @default.
- W1625253008 cites W2116416291 @default.
- W1625253008 cites W2117812871 @default.
- W1625253008 cites W2118659960 @default.
- W1625253008 cites W2130203234 @default.
- W1625253008 cites W2136336930 @default.
- W1625253008 cites W2142498621 @default.
- W1625253008 cites W2146620998 @default.
- W1625253008 cites W2146803704 @default.
- W1625253008 cites W2152246075 @default.
- W1625253008 cites W2156140337 @default.
- W1625253008 cites W2156984627 @default.
- W1625253008 cites W2160976568 @default.
- W1625253008 cites W2167030304 @default.
- W1625253008 cites W2169120848 @default.
- W1625253008 cites W2169537007 @default.
- W1625253008 cites W2170415186 @default.
- W1625253008 cites W2170855736 @default.
- W1625253008 doi "https://doi.org/10.1111/j.1755-0998.2012.03153.x" @default.
- W1625253008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22571382" @default.
- W1625253008 hasPublicationYear "2012" @default.
- W1625253008 type Work @default.
- W1625253008 sameAs 1625253008 @default.
- W1625253008 citedByCount "100" @default.
- W1625253008 countsByYear W16252530082012 @default.
- W1625253008 countsByYear W16252530082013 @default.
- W1625253008 countsByYear W16252530082014 @default.
- W1625253008 countsByYear W16252530082015 @default.
- W1625253008 countsByYear W16252530082016 @default.
- W1625253008 countsByYear W16252530082017 @default.
- W1625253008 countsByYear W16252530082018 @default.
- W1625253008 countsByYear W16252530082019 @default.
- W1625253008 countsByYear W16252530082020 @default.
- W1625253008 countsByYear W16252530082021 @default.
- W1625253008 countsByYear W16252530082022 @default.
- W1625253008 countsByYear W16252530082023 @default.
- W1625253008 crossrefType "journal-article" @default.
- W1625253008 hasAuthorship W1625253008A5004966934 @default.
- W1625253008 hasAuthorship W1625253008A5019671078 @default.
- W1625253008 hasAuthorship W1625253008A5028873129 @default.
- W1625253008 hasAuthorship W1625253008A5032245151 @default.
- W1625253008 hasAuthorship W1625253008A5033156491 @default.
- W1625253008 hasAuthorship W1625253008A5056158848 @default.
- W1625253008 hasAuthorship W1625253008A5091368168 @default.
- W1625253008 hasConcept C105795698 @default.
- W1625253008 hasConcept C107673813 @default.
- W1625253008 hasConcept C11413529 @default.
- W1625253008 hasConcept C119857082 @default.
- W1625253008 hasConcept C154945302 @default.
- W1625253008 hasConcept C160234255 @default.
- W1625253008 hasConcept C207201462 @default.
- W1625253008 hasConcept C2776214188 @default.
- W1625253008 hasConcept C2779377595 @default.
- W1625253008 hasConcept C33923547 @default.
- W1625253008 hasConcept C41008148 @default.
- W1625253008 hasConcept C45374587 @default.
- W1625253008 hasConcept C69738355 @default.
- W1625253008 hasConceptScore W1625253008C105795698 @default.
- W1625253008 hasConceptScore W1625253008C107673813 @default.
- W1625253008 hasConceptScore W1625253008C11413529 @default.
- W1625253008 hasConceptScore W1625253008C119857082 @default.
- W1625253008 hasConceptScore W1625253008C154945302 @default.
- W1625253008 hasConceptScore W1625253008C160234255 @default.
- W1625253008 hasConceptScore W1625253008C207201462 @default.
- W1625253008 hasConceptScore W1625253008C2776214188 @default.
- W1625253008 hasConceptScore W1625253008C2779377595 @default.
- W1625253008 hasConceptScore W1625253008C33923547 @default.
- W1625253008 hasConceptScore W1625253008C41008148 @default.
- W1625253008 hasConceptScore W1625253008C45374587 @default.