Matches in SemOpenAlex for { <https://semopenalex.org/work/W1625810944> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W1625810944 abstract "I. The complex Ginzburg-Landau (CGL) equation is studied via numerical simulations. The method used is constructed by splitting the CGL equation into two exactly integrable equations and alternating the exact solutions using fractional time steps. In both one and two dimensions, the behavior of chaotic solutions is examined near the nonlinear Schroedinger (NLS) limit. In 1D, no large deviations occur, probability density functions remain purely Gaussian, and no inertial-type range appears in the wavenumber spectrum. Thus, only occurs. Estimates are obtained for the dimension of the inertial manifold and the attractor dimension. Scaling with the domain length shows universality in both the wavenumber and Lyapunov exponent spectra. In 2D, large localized spikes, highly non-Gaussian p.d.f.'s, and an inertial-type range are found near the NLS limit, implying the presence of turbulence. The transition from soft to hard turbulence is found to be gradual. The role of topological defects is examined and Lyapunov exponents calculated for one dissipation level show the expected scaling with the domain area.IIa. The partial differential equation describing a forced nonlinear beam is studied via numerical simulations using a Galerkin projection. The dynamics are found to be very low-dimensional and this is shown to be the result of the form of the nonlinearity in the p.d.e.IIb. Extensions of the Lorenz equations are studied numerically and analytically. A translationally invariant model captures the dependence on the initial condition of the horizontal position of the convective rolls. An ad hoc extension leads to horizontal oscillation of the rolls, both periodically and chaotically." @default.
- W1625810944 created "2016-06-24" @default.
- W1625810944 creator A5014614488 @default.
- W1625810944 creator A5063498193 @default.
- W1625810944 date "1993-01-01" @default.
- W1625810944 modified "2023-09-26" @default.
- W1625810944 title "Spatiotemporal chaos in the complex ginzburg-landau equation and other studies in nonlinear dynamics" @default.
- W1625810944 hasPublicationYear "1993" @default.
- W1625810944 type Work @default.
- W1625810944 sameAs 1625810944 @default.
- W1625810944 citedByCount "0" @default.
- W1625810944 crossrefType "journal-article" @default.
- W1625810944 hasAuthorship W1625810944A5014614488 @default.
- W1625810944 hasAuthorship W1625810944A5063498193 @default.
- W1625810944 hasConcept C121130766 @default.
- W1625810944 hasConcept C121332964 @default.
- W1625810944 hasConcept C121864883 @default.
- W1625810944 hasConcept C134306372 @default.
- W1625810944 hasConcept C158622935 @default.
- W1625810944 hasConcept C164380108 @default.
- W1625810944 hasConcept C191544260 @default.
- W1625810944 hasConcept C196558001 @default.
- W1625810944 hasConcept C2524010 @default.
- W1625810944 hasConcept C33923547 @default.
- W1625810944 hasConcept C62520636 @default.
- W1625810944 hasConcept C83774755 @default.
- W1625810944 hasConcept C97355855 @default.
- W1625810944 hasConcept C99844830 @default.
- W1625810944 hasConceptScore W1625810944C121130766 @default.
- W1625810944 hasConceptScore W1625810944C121332964 @default.
- W1625810944 hasConceptScore W1625810944C121864883 @default.
- W1625810944 hasConceptScore W1625810944C134306372 @default.
- W1625810944 hasConceptScore W1625810944C158622935 @default.
- W1625810944 hasConceptScore W1625810944C164380108 @default.
- W1625810944 hasConceptScore W1625810944C191544260 @default.
- W1625810944 hasConceptScore W1625810944C196558001 @default.
- W1625810944 hasConceptScore W1625810944C2524010 @default.
- W1625810944 hasConceptScore W1625810944C33923547 @default.
- W1625810944 hasConceptScore W1625810944C62520636 @default.
- W1625810944 hasConceptScore W1625810944C83774755 @default.
- W1625810944 hasConceptScore W1625810944C97355855 @default.
- W1625810944 hasConceptScore W1625810944C99844830 @default.
- W1625810944 hasLocation W16258109441 @default.
- W1625810944 hasOpenAccess W1625810944 @default.
- W1625810944 hasPrimaryLocation W16258109441 @default.
- W1625810944 hasRelatedWork W1038963986 @default.
- W1625810944 hasRelatedWork W1624690503 @default.
- W1625810944 hasRelatedWork W1987504888 @default.
- W1625810944 hasRelatedWork W1994163963 @default.
- W1625810944 hasRelatedWork W2006157263 @default.
- W1625810944 hasRelatedWork W2020514021 @default.
- W1625810944 hasRelatedWork W2021036748 @default.
- W1625810944 hasRelatedWork W2024211775 @default.
- W1625810944 hasRelatedWork W2032505094 @default.
- W1625810944 hasRelatedWork W2037036961 @default.
- W1625810944 hasRelatedWork W2042381662 @default.
- W1625810944 hasRelatedWork W2052028109 @default.
- W1625810944 hasRelatedWork W2052622852 @default.
- W1625810944 hasRelatedWork W2082855383 @default.
- W1625810944 hasRelatedWork W2092605865 @default.
- W1625810944 hasRelatedWork W2158820853 @default.
- W1625810944 hasRelatedWork W2466610221 @default.
- W1625810944 hasRelatedWork W3098131570 @default.
- W1625810944 hasRelatedWork W3098810338 @default.
- W1625810944 hasRelatedWork W2154186622 @default.
- W1625810944 isParatext "false" @default.
- W1625810944 isRetracted "false" @default.
- W1625810944 magId "1625810944" @default.
- W1625810944 workType "article" @default.