Matches in SemOpenAlex for { <https://semopenalex.org/work/W1626069776> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1626069776 startingPage "22" @default.
- W1626069776 abstract "Important information is contained in the scene changes observed by temporal image sequences. The generation of the map containing the targets in multitemporal high resolution hyperspectral images is not an easy task. The problematic is the detection of risk targets like cars, tracks, work area, in situation of observations in different illumination conditions and strong background clutter. Nowadays, one of the requirements of the systems capable to identify targets of interest, is to have a reasonably large number of pixels on targets, and there are many types of changes which could be important, and it is often not possible to obtain a large number of pixels on them. Some examples could be cars or persons. The creation of the archive catalogues or scene understanding paradigms are based on the primitive feature extraction. It has not been considered as relevant external knowledge in order to implement a robust and general method to identify targets and reject non interesting changes independent of the data set. For this reason, the requirements on data pre-processing are realistic, i.e. the primitive feature shall be generic such that by different combinations is able to describe a large variety of changes and the data could be expected to be acquired from a satellite sensor in an operational system. The article presents a library of algorithms for characterization of scene changes. There are three kinds of changes: those representing the targets, those non interesting changes, also called false alarms, that correspond mostly to shadows, and finally, the changes due to strong clutter on the scenes. In the article are introduced firstly some unsupervised techniques for target detection. These are based on the extraction of the basic image primitives as spectral signatures or texture parameters, on the analysis of the spectral bands applying different operations between them, as sums, differences, ratios or even temporal escalar product, and also on the analysis of the principal components. Because of the nature of the sites, it is searched for other techniques more related with the composition of color of each band as vegetation indexes that could help in target detection. Following this approach, illumination invariant indexes are developped in order to detect the strong false alarms. Finally, the different algorithms are combined to optimize the final results. However, images can not only contain the quantitative and objective information obtained by unsupervised algorithms, but also subjective based on knowledge. The knowledge consists in the ensemble of existing information, know causalities and other type of associations between information and concepts. Knowledge-driven Information Mining System (KIM) is built in order to formalize the knowledge acquisition and the knowledge driven interpretation. It provides solutions how to access to large image data sets through information mining, and content based image retrieval. In the system, the user-defined semantic image content interpretation is linked with Bayesian networks to the completely unsupervised models. The meaning of image objects or structures is obtained by an interactive learning process fusing the relevant information extracted from the sensor image data set. A right combination of models and a good interaction by the user with the system goes to a clear detection of the targets." @default.
- W1626069776 created "2016-06-24" @default.
- W1626069776 creator A5032370631 @default.
- W1626069776 creator A5064561904 @default.
- W1626069776 date "2004-09-01" @default.
- W1626069776 modified "2023-09-27" @default.
- W1626069776 title "Mining Image Temporal Changes" @default.
- W1626069776 cites W1613805295 @default.
- W1626069776 cites W1687797484 @default.
- W1626069776 cites W1704999350 @default.
- W1626069776 cites W2006383776 @default.
- W1626069776 cites W2137900926 @default.
- W1626069776 cites W2153744498 @default.
- W1626069776 cites W2160544350 @default.
- W1626069776 hasPublicationYear "2004" @default.
- W1626069776 type Work @default.
- W1626069776 sameAs 1626069776 @default.
- W1626069776 citedByCount "0" @default.
- W1626069776 crossrefType "journal-article" @default.
- W1626069776 hasAuthorship W1626069776A5032370631 @default.
- W1626069776 hasAuthorship W1626069776A5064561904 @default.
- W1626069776 hasConcept C124101348 @default.
- W1626069776 hasConcept C132094186 @default.
- W1626069776 hasConcept C136197465 @default.
- W1626069776 hasConcept C138885662 @default.
- W1626069776 hasConcept C153180895 @default.
- W1626069776 hasConcept C154945302 @default.
- W1626069776 hasConcept C159078339 @default.
- W1626069776 hasConcept C160633673 @default.
- W1626069776 hasConcept C162324750 @default.
- W1626069776 hasConcept C177264268 @default.
- W1626069776 hasConcept C187736073 @default.
- W1626069776 hasConcept C199360897 @default.
- W1626069776 hasConcept C203595873 @default.
- W1626069776 hasConcept C2776401178 @default.
- W1626069776 hasConcept C2780451532 @default.
- W1626069776 hasConcept C31972630 @default.
- W1626069776 hasConcept C41008148 @default.
- W1626069776 hasConcept C41895202 @default.
- W1626069776 hasConcept C554190296 @default.
- W1626069776 hasConcept C76155785 @default.
- W1626069776 hasConceptScore W1626069776C124101348 @default.
- W1626069776 hasConceptScore W1626069776C132094186 @default.
- W1626069776 hasConceptScore W1626069776C136197465 @default.
- W1626069776 hasConceptScore W1626069776C138885662 @default.
- W1626069776 hasConceptScore W1626069776C153180895 @default.
- W1626069776 hasConceptScore W1626069776C154945302 @default.
- W1626069776 hasConceptScore W1626069776C159078339 @default.
- W1626069776 hasConceptScore W1626069776C160633673 @default.
- W1626069776 hasConceptScore W1626069776C162324750 @default.
- W1626069776 hasConceptScore W1626069776C177264268 @default.
- W1626069776 hasConceptScore W1626069776C187736073 @default.
- W1626069776 hasConceptScore W1626069776C199360897 @default.
- W1626069776 hasConceptScore W1626069776C203595873 @default.
- W1626069776 hasConceptScore W1626069776C2776401178 @default.
- W1626069776 hasConceptScore W1626069776C2780451532 @default.
- W1626069776 hasConceptScore W1626069776C31972630 @default.
- W1626069776 hasConceptScore W1626069776C41008148 @default.
- W1626069776 hasConceptScore W1626069776C41895202 @default.
- W1626069776 hasConceptScore W1626069776C554190296 @default.
- W1626069776 hasConceptScore W1626069776C76155785 @default.
- W1626069776 hasLocation W16260697761 @default.
- W1626069776 hasOpenAccess W1626069776 @default.
- W1626069776 hasPrimaryLocation W16260697761 @default.
- W1626069776 hasRelatedWork W1540767529 @default.
- W1626069776 hasRelatedWork W1894781139 @default.
- W1626069776 hasRelatedWork W1978686372 @default.
- W1626069776 hasRelatedWork W1983093030 @default.
- W1626069776 hasRelatedWork W1992957801 @default.
- W1626069776 hasRelatedWork W2022001862 @default.
- W1626069776 hasRelatedWork W2039708646 @default.
- W1626069776 hasRelatedWork W2069617096 @default.
- W1626069776 hasRelatedWork W2072170192 @default.
- W1626069776 hasRelatedWork W2079292546 @default.
- W1626069776 hasRelatedWork W2122814528 @default.
- W1626069776 hasRelatedWork W2145080662 @default.
- W1626069776 hasRelatedWork W2150676884 @default.
- W1626069776 hasRelatedWork W2299333978 @default.
- W1626069776 hasRelatedWork W2589225681 @default.
- W1626069776 hasRelatedWork W2776766762 @default.
- W1626069776 hasRelatedWork W45723119 @default.
- W1626069776 hasRelatedWork W656385305 @default.
- W1626069776 hasRelatedWork W2101219766 @default.
- W1626069776 hasRelatedWork W2525210362 @default.
- W1626069776 hasVolume "553" @default.
- W1626069776 isParatext "false" @default.
- W1626069776 isRetracted "false" @default.
- W1626069776 magId "1626069776" @default.
- W1626069776 workType "article" @default.