Matches in SemOpenAlex for { <https://semopenalex.org/work/W1628012887> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1628012887 endingPage "278" @default.
- W1628012887 startingPage "245" @default.
- W1628012887 abstract "Let S be a nonsingular projective K3 surface. Motivated by the study of the Gromov-Witten theory of the Hilbert scheme of points of S, we conjecture a formula for the Gromov-Witten theory (in all curve classes) of the Calabi-Yau 3-fold S × E where E is an elliptic curve. In the primitive case, our conjecture is expressed in terms of the Igusa cusp form χ10 and matches a prediction via heterotic duality by Katz, Klemm, and Vafa. In imprimitive cases, our conjecture suggests a new structure for the complete theory of descendent integration for K3 surfaces. Via the Gromov-Witten/Pairs correspondence, a conjecture for the reduced stable pairs theory of S × E is also presented. Speculations about the motivic stable pairs theory of S × E are made. The reduced Gromov-Witten theory of the Hilbert scheme of points of S is much richer than S × E. The 2-point function of Hilbd(S) determines a matrix with trace equal to the partition function of S × E. A conjectural form for the full matrix is given." @default.
- W1628012887 created "2016-06-24" @default.
- W1628012887 creator A5014684784 @default.
- W1628012887 creator A5061805366 @default.
- W1628012887 date "2016-01-01" @default.
- W1628012887 modified "2023-10-16" @default.
- W1628012887 title "Curve Counting on K3 × E, The Igusa Cusp Form χ10, and Descendent Integration" @default.
- W1628012887 cites W1480660276 @default.
- W1628012887 cites W1484781478 @default.
- W1628012887 cites W1535310302 @default.
- W1628012887 cites W1538893142 @default.
- W1628012887 cites W1545716274 @default.
- W1628012887 cites W1587192161 @default.
- W1628012887 cites W1912228242 @default.
- W1628012887 cites W1974637169 @default.
- W1628012887 cites W2001583421 @default.
- W1628012887 cites W2041808553 @default.
- W1628012887 cites W2054875997 @default.
- W1628012887 cites W2063051166 @default.
- W1628012887 cites W2092938060 @default.
- W1628012887 cites W2125099027 @default.
- W1628012887 cites W2165749177 @default.
- W1628012887 cites W2214822119 @default.
- W1628012887 cites W2949115232 @default.
- W1628012887 cites W2952637247 @default.
- W1628012887 cites W2963385090 @default.
- W1628012887 cites W2963663668 @default.
- W1628012887 cites W3101653243 @default.
- W1628012887 cites W3104878773 @default.
- W1628012887 cites W3125314328 @default.
- W1628012887 cites W3157557417 @default.
- W1628012887 cites W635095611 @default.
- W1628012887 doi "https://doi.org/10.1007/978-3-319-29959-4_10" @default.
- W1628012887 hasPublicationYear "2016" @default.
- W1628012887 type Work @default.
- W1628012887 sameAs 1628012887 @default.
- W1628012887 citedByCount "22" @default.
- W1628012887 countsByYear W16280128872015 @default.
- W1628012887 countsByYear W16280128872016 @default.
- W1628012887 countsByYear W16280128872017 @default.
- W1628012887 countsByYear W16280128872018 @default.
- W1628012887 countsByYear W16280128872020 @default.
- W1628012887 countsByYear W16280128872021 @default.
- W1628012887 countsByYear W16280128872022 @default.
- W1628012887 crossrefType "book-chapter" @default.
- W1628012887 hasAuthorship W1628012887A5014684784 @default.
- W1628012887 hasAuthorship W1628012887A5061805366 @default.
- W1628012887 hasBestOaLocation W16280128872 @default.
- W1628012887 hasConcept C106142965 @default.
- W1628012887 hasConcept C114614502 @default.
- W1628012887 hasConcept C150279058 @default.
- W1628012887 hasConcept C191877429 @default.
- W1628012887 hasConcept C202444582 @default.
- W1628012887 hasConcept C2524010 @default.
- W1628012887 hasConcept C2778023678 @default.
- W1628012887 hasConcept C2778400075 @default.
- W1628012887 hasConcept C2780990831 @default.
- W1628012887 hasConcept C33923547 @default.
- W1628012887 hasConcept C73373263 @default.
- W1628012887 hasConcept C75764964 @default.
- W1628012887 hasConcept C96442724 @default.
- W1628012887 hasConceptScore W1628012887C106142965 @default.
- W1628012887 hasConceptScore W1628012887C114614502 @default.
- W1628012887 hasConceptScore W1628012887C150279058 @default.
- W1628012887 hasConceptScore W1628012887C191877429 @default.
- W1628012887 hasConceptScore W1628012887C202444582 @default.
- W1628012887 hasConceptScore W1628012887C2524010 @default.
- W1628012887 hasConceptScore W1628012887C2778023678 @default.
- W1628012887 hasConceptScore W1628012887C2778400075 @default.
- W1628012887 hasConceptScore W1628012887C2780990831 @default.
- W1628012887 hasConceptScore W1628012887C33923547 @default.
- W1628012887 hasConceptScore W1628012887C73373263 @default.
- W1628012887 hasConceptScore W1628012887C75764964 @default.
- W1628012887 hasConceptScore W1628012887C96442724 @default.
- W1628012887 hasLocation W16280128871 @default.
- W1628012887 hasLocation W16280128872 @default.
- W1628012887 hasOpenAccess W1628012887 @default.
- W1628012887 hasPrimaryLocation W16280128871 @default.
- W1628012887 hasRelatedWork W1583424606 @default.
- W1628012887 hasRelatedWork W1974615466 @default.
- W1628012887 hasRelatedWork W1991826911 @default.
- W1628012887 hasRelatedWork W2066445563 @default.
- W1628012887 hasRelatedWork W2078585090 @default.
- W1628012887 hasRelatedWork W2811163564 @default.
- W1628012887 hasRelatedWork W2903488701 @default.
- W1628012887 hasRelatedWork W2963705374 @default.
- W1628012887 hasRelatedWork W4200122318 @default.
- W1628012887 hasRelatedWork W4224329379 @default.
- W1628012887 isParatext "false" @default.
- W1628012887 isRetracted "false" @default.
- W1628012887 magId "1628012887" @default.
- W1628012887 workType "book-chapter" @default.