Matches in SemOpenAlex for { <https://semopenalex.org/work/W1629038671> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W1629038671 endingPage "1206" @default.
- W1629038671 startingPage "1199" @default.
- W1629038671 abstract "We consider the problem of minimizing the energy of the maps <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=u left-parenthesis r comma theta right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>u(r,theta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from the annulus <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Omega Subscript rho Baseline equals upper B 1 minus upper B overbar Subscript rho> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi class=MJX-variant mathvariant=normal>∖<!-- ∖ --></mml:mi> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mover> <mml:mi>B</mml:mi> <mml:mo stretchy=false>¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>Omega _rho =B_1backslash bar B_rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S squared> <mml:semantics> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>S^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=u left-parenthesis r comma theta right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>u(r,theta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is equal to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis cosine theta comma sine theta comma 0 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>cos</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>sin</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(cos theta ,sin theta ,0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=r equals rho> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>=</mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>r=rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis cosine left-parenthesis theta plus theta 0 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>cos</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>θ<!-- θ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(cos (theta +theta _0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sine left-parenthesis theta plus theta 0 right-parenthesis comma 0 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>sin</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>θ<!-- θ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>sin (theta +theta _0),0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=r equals 1> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>r=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=theta 0 element-of left-bracket 0 comma pi right-bracket> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>θ<!-- θ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=false>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy=false>]</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>theta _0in [0,pi ]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a fixed angle. We prove that the minimum is attained at a unique harmonic map <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=u Subscript rho> <mml:semantics> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>u_rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which is a planar map if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=log squared rho plus 3 theta 0 squared less-than-or-equal-to pi squared> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>log</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo><!-- --></mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>+</mml:mo> <mml:mn>3</mml:mn> <mml:msubsup> <mml:mi>θ<!-- θ --></mml:mi> <mml:mn>0</mml:mn> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>log ^2rho +3theta _0^2le pi ^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, while it is not planar in the case <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=log squared rho plus theta 0 squared greater-than pi squared> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>log</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo><!-- --></mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>θ<!-- θ --></mml:mi> <mml:mn>0</mml:mn> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mo>></mml:mo> <mml:msup> <mml:mi>π<!-- π --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>log ^2rho +theta _0^2>pi ^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Moreover, we show that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=u Subscript rho> <mml:semantics> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>u_rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> tends to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=v overbar> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mover> <mml:mi>v</mml:mi> <mml:mo stretchy=false>¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=application/x-tex>bar v</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho right-arrow 0> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>rho to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=v overbar> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mover> <mml:mi>v</mml:mi> <mml:mo stretchy=false>¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=application/x-tex>bar v</mml:annotation> </mml:semantics> </mml:math> </inline-formula> minimizes the energy of the maps <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=v left-parenthesis r comma theta right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>v</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>v(r,theta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper B 1> <mml:semantics> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=application/x-tex>B_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S squared> <mml:semantics> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>S^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with the boundary condition <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=v left-parenthesis 1 comma theta right-parenthesis equals left-parenthesis cosine left-parenthesis theta plus theta 0 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>v</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>cos</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>θ<!-- θ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>v(1,theta )=(cos (theta +theta _0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sine left-parenthesis theta plus theta 0 right-parenthesis comma 0 right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>sin</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>θ<!-- θ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>sin (theta +theta _0),0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W1629038671 created "2016-06-24" @default.
- W1629038671 creator A5005999785 @default.
- W1629038671 date "2000-11-21" @default.
- W1629038671 modified "2023-09-27" @default.
- W1629038671 title "A bifurcation result for harmonic maps from an annulus to 𝑆² with not symmetric boundary data" @default.
- W1629038671 cites W2010532103 @default.
- W1629038671 cites W2020917925 @default.
- W1629038671 cites W2052149891 @default.
- W1629038671 doi "https://doi.org/10.1090/s0002-9939-00-05643-4" @default.
- W1629038671 hasPublicationYear "2000" @default.
- W1629038671 type Work @default.
- W1629038671 sameAs 1629038671 @default.
- W1629038671 citedByCount "1" @default.
- W1629038671 countsByYear W16290386712014 @default.
- W1629038671 crossrefType "journal-article" @default.
- W1629038671 hasAuthorship W1629038671A5005999785 @default.
- W1629038671 hasBestOaLocation W16290386711 @default.
- W1629038671 hasConcept C11413529 @default.
- W1629038671 hasConcept C154945302 @default.
- W1629038671 hasConcept C41008148 @default.
- W1629038671 hasConceptScore W1629038671C11413529 @default.
- W1629038671 hasConceptScore W1629038671C154945302 @default.
- W1629038671 hasConceptScore W1629038671C41008148 @default.
- W1629038671 hasIssue "4" @default.
- W1629038671 hasLocation W16290386711 @default.
- W1629038671 hasOpenAccess W1629038671 @default.
- W1629038671 hasPrimaryLocation W16290386711 @default.
- W1629038671 hasRelatedWork W2051487156 @default.
- W1629038671 hasRelatedWork W2073681303 @default.
- W1629038671 hasRelatedWork W2351491280 @default.
- W1629038671 hasRelatedWork W2371447506 @default.
- W1629038671 hasRelatedWork W2386767533 @default.
- W1629038671 hasRelatedWork W2748952813 @default.
- W1629038671 hasRelatedWork W2899084033 @default.
- W1629038671 hasRelatedWork W303980170 @default.
- W1629038671 hasRelatedWork W3141679561 @default.
- W1629038671 hasRelatedWork W4225307033 @default.
- W1629038671 hasVolume "129" @default.
- W1629038671 isParatext "false" @default.
- W1629038671 isRetracted "false" @default.
- W1629038671 magId "1629038671" @default.
- W1629038671 workType "article" @default.