Matches in SemOpenAlex for { <https://semopenalex.org/work/W162928091> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W162928091 abstract "Language-induced Biases on Human Sequential Learning Luca Onnis (lucao@hawaii.edu) Department of Second Language Studies & Center for Second Language Research University of Hawai‘i at Manoa, 1890 East-West Road, Honolulu, Hawaii 96822 USA Erik Thiessen (thiessen@andrew.cmu.edu) Department of Psychology Carnegie Mellon University, Baker Hall, Pittsburgh, Pennsylvania 15213 USA Abstract regularities that learners detect in ways that are consistent with the predominant statistical structure in their native language. What are the effects of experience on subsequent learning? We explored the effects of language-specific word order knowledge on the acquisition of sequential conditional information. Korean and English adults were engaged in a sequence learning task involving three different sets of stimuli: auditory linguistic (nonsense syllables), visual non- linguistic (nonsense shapes), and auditory non-linguistic (pure tones). The forward and backward probabilities between adjacent elements generated two equally probable and orthogonal perceptual parses of the elements, such that any significant preference at test must be due to either general cognitive biases, or prior language-induced biases. We found that language modulated parsing preferences with the linguistic stimuli only. Intriguingly, these preferences are congruent with the dominant word order patterns of each language, as corroborated by corpus analyses. These findings suggest that mechanisms of statistical sequential learning are implicated in language, and experience with language may affect cognitive processes and later learning. Prediction and retrodiction in sequential learning Recent studies have shown that learners can exploit both predictive and retrodictive relations, operationalized as forward and backward transitional probabilities respectively. For instance, Jones & Pashler (2007) showed participants sequences of shapes governed by probabilistic relations, and then asked them to choose which shape reliably came after a probe shape (prediction test) or before a probe shape (retrodiction test). In experiments where forward and backward probabilities were made informative, they found that both prediction and retrodiction were used effectively for recalling memories. In a similar experiment using a continuous sequence of nonsense syllables, Perruchet & Desaulty (2008) found that participants perceived word boundaries based on backward transitional probabilities as well as forward probabilities equally well. Likewise, Pelucchi, Hay, & Saffran (2009) provided evidence that infants can track backward statistics in speech. The three studies above tested cases in which forward and backward probabilities were never in conflict. Rather, each cue was made maximally informative in a given experiment, while the other was made uninformative. Yet in naturalistic circumstances, prediction and retrodiction may need to be effectively combined, as when learning the word order of a language. In this respect, a comparison between English and Korean seems particularly appropriate because several word order relations of English are reversed in Korean. Keywords: corpus analyses; experience-dependent learning; implicit learning; prediction; retrodiction; second language acquisition; sensitive periods; sequential learning; statistical learning; transitional probabilities; word order; linguistic typology. Introduction Statistical information has been argued to be an important cue to linguistic structure. For example, sounds within a word are more predictable than sounds across boundaries, which may help infants discover words in fluent speech. Because this type of statistical information is present in all languages, statistical information may be a particularly important cue early in development, one that can be used without requiring prior experience with the native language (e.g., Thiessen & Saffran, 2003). But while statistical learning may be a universal cue to linguistic structure, it is also the case that the statistical structure across languages differs. If statistical learning fails to adapt to these differences, it is unlikely to be an optimal learning strategy. While much research has examined how statistical learning helps learners adapt to the structure of their native language (e.g., Maye, Werker, & Gerken, 2002; Thiessen & Saffran, 2007), it is unknown whether statistical learning itself adapts to the characteristics of the native language. In this series of experiments, we ask whether experience with language alters the kinds of statistical Prediction and retrodiction in natural languages: Typology and word order tendencies. In English, the head elements in a phrase come first, while in Korean the head follows the phrase (e.g., ‘[Door- OBJECT] [close-IMPERATIVE]’ = ‘[You close] [the door]’, where square brackets indicate phrase groupings). The English sentence “I saw him go there” is glossed as “I him there go saw”. Likewise “Give me the ball” is glossed as “Ball me give”; “Let’s go get some food” is glossed as “Food get go let’s”. Thus, frequent constructions such as transitives, imperatives, and exortatives in English have a reversed word-order in Korean. English is also prepositional (‘to school’), while Korean is postpositional (‘school to’). We conjectured that since the" @default.
- W162928091 created "2016-06-24" @default.
- W162928091 creator A5040734592 @default.
- W162928091 creator A5089813376 @default.
- W162928091 date "2012-01-01" @default.
- W162928091 modified "2023-09-23" @default.
- W162928091 title "Language-induced Biases on Human Sequential Learning" @default.
- W162928091 cites W1500689260 @default.
- W162928091 cites W1549337014 @default.
- W162928091 cites W1967421273 @default.
- W162928091 cites W1996814262 @default.
- W162928091 cites W2026032996 @default.
- W162928091 cites W2077917267 @default.
- W162928091 cites W2104752510 @default.
- W162928091 cites W2124235535 @default.
- W162928091 cites W2142111485 @default.
- W162928091 cites W2142955070 @default.
- W162928091 cites W2166061736 @default.
- W162928091 hasPublicationYear "2012" @default.
- W162928091 type Work @default.
- W162928091 sameAs 162928091 @default.
- W162928091 citedByCount "1" @default.
- W162928091 countsByYear W1629280912015 @default.
- W162928091 crossrefType "journal-article" @default.
- W162928091 hasAuthorship W162928091A5040734592 @default.
- W162928091 hasAuthorship W162928091A5089813376 @default.
- W162928091 hasConcept C111472728 @default.
- W162928091 hasConcept C138885662 @default.
- W162928091 hasConcept C145420912 @default.
- W162928091 hasConcept C154945302 @default.
- W162928091 hasConcept C15744967 @default.
- W162928091 hasConcept C169760540 @default.
- W162928091 hasConcept C169900460 @default.
- W162928091 hasConcept C171041071 @default.
- W162928091 hasConcept C180747234 @default.
- W162928091 hasConcept C204321447 @default.
- W162928091 hasConcept C26760741 @default.
- W162928091 hasConcept C2776035688 @default.
- W162928091 hasConcept C41008148 @default.
- W162928091 hasConcept C41895202 @default.
- W162928091 hasConcept C46312422 @default.
- W162928091 hasConcept C70777604 @default.
- W162928091 hasConcept C74672266 @default.
- W162928091 hasConcept C9354725 @default.
- W162928091 hasConcept C94922259 @default.
- W162928091 hasConceptScore W162928091C111472728 @default.
- W162928091 hasConceptScore W162928091C138885662 @default.
- W162928091 hasConceptScore W162928091C145420912 @default.
- W162928091 hasConceptScore W162928091C154945302 @default.
- W162928091 hasConceptScore W162928091C15744967 @default.
- W162928091 hasConceptScore W162928091C169760540 @default.
- W162928091 hasConceptScore W162928091C169900460 @default.
- W162928091 hasConceptScore W162928091C171041071 @default.
- W162928091 hasConceptScore W162928091C180747234 @default.
- W162928091 hasConceptScore W162928091C204321447 @default.
- W162928091 hasConceptScore W162928091C26760741 @default.
- W162928091 hasConceptScore W162928091C2776035688 @default.
- W162928091 hasConceptScore W162928091C41008148 @default.
- W162928091 hasConceptScore W162928091C41895202 @default.
- W162928091 hasConceptScore W162928091C46312422 @default.
- W162928091 hasConceptScore W162928091C70777604 @default.
- W162928091 hasConceptScore W162928091C74672266 @default.
- W162928091 hasConceptScore W162928091C9354725 @default.
- W162928091 hasConceptScore W162928091C94922259 @default.
- W162928091 hasIssue "34" @default.
- W162928091 hasLocation W1629280911 @default.
- W162928091 hasOpenAccess W162928091 @default.
- W162928091 hasPrimaryLocation W1629280911 @default.
- W162928091 hasRelatedWork W10059198 @default.
- W162928091 hasRelatedWork W115078371 @default.
- W162928091 hasRelatedWork W2071815064 @default.
- W162928091 hasRelatedWork W2128737773 @default.
- W162928091 hasRelatedWork W2172193191 @default.
- W162928091 hasRelatedWork W2301139734 @default.
- W162928091 hasRelatedWork W2398586637 @default.
- W162928091 hasRelatedWork W2405649931 @default.
- W162928091 hasRelatedWork W2585692033 @default.
- W162928091 hasRelatedWork W2594135806 @default.
- W162928091 hasRelatedWork W2622479281 @default.
- W162928091 hasRelatedWork W2757888004 @default.
- W162928091 hasRelatedWork W2767227261 @default.
- W162928091 hasRelatedWork W2767234332 @default.
- W162928091 hasRelatedWork W2767369154 @default.
- W162928091 hasRelatedWork W2767389158 @default.
- W162928091 hasRelatedWork W2774766413 @default.
- W162928091 hasRelatedWork W2886800006 @default.
- W162928091 hasRelatedWork W407761643 @default.
- W162928091 hasRelatedWork W48178473 @default.
- W162928091 hasVolume "34" @default.
- W162928091 isParatext "false" @default.
- W162928091 isRetracted "false" @default.
- W162928091 magId "162928091" @default.
- W162928091 workType "article" @default.