Matches in SemOpenAlex for { <https://semopenalex.org/work/W1630221750> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W1630221750 abstract "Gaussian Process is a Machine Learning technique that has been applied to the analysis of percutaneous absorption of chemicals through human skin. The normal, automatic method of setting the hyperparameters associated with Gaussian Processes may not be suitable for small datasets. In this paper we investigate whether a handcrafted search method of determining these hyperparameters is better for such datasets." @default.
- W1630221750 created "2016-06-24" @default.
- W1630221750 creator A5009594742 @default.
- W1630221750 creator A5017981647 @default.
- W1630221750 creator A5028608650 @default.
- W1630221750 creator A5045894156 @default.
- W1630221750 creator A5059243386 @default.
- W1630221750 creator A5067070776 @default.
- W1630221750 creator A5076534815 @default.
- W1630221750 date "2015-07-01" @default.
- W1630221750 modified "2023-09-25" @default.
- W1630221750 title "The importance of hyperparameters selection within small datasets" @default.
- W1630221750 cites W141715706 @default.
- W1630221750 cites W1561210178 @default.
- W1630221750 cites W1603489394 @default.
- W1630221750 cites W1660551338 @default.
- W1630221750 cites W1985699832 @default.
- W1630221750 cites W1995412478 @default.
- W1630221750 cites W2038780961 @default.
- W1630221750 cites W2109325327 @default.
- W1630221750 cites W2134677439 @default.
- W1630221750 cites W4253780647 @default.
- W1630221750 doi "https://doi.org/10.1109/ijcnn.2015.7280645" @default.
- W1630221750 hasPublicationYear "2015" @default.
- W1630221750 type Work @default.
- W1630221750 sameAs 1630221750 @default.
- W1630221750 citedByCount "2" @default.
- W1630221750 countsByYear W16302217502015 @default.
- W1630221750 countsByYear W16302217502019 @default.
- W1630221750 crossrefType "proceedings-article" @default.
- W1630221750 hasAuthorship W1630221750A5009594742 @default.
- W1630221750 hasAuthorship W1630221750A5017981647 @default.
- W1630221750 hasAuthorship W1630221750A5028608650 @default.
- W1630221750 hasAuthorship W1630221750A5045894156 @default.
- W1630221750 hasAuthorship W1630221750A5059243386 @default.
- W1630221750 hasAuthorship W1630221750A5067070776 @default.
- W1630221750 hasAuthorship W1630221750A5076534815 @default.
- W1630221750 hasConcept C119857082 @default.
- W1630221750 hasConcept C154945302 @default.
- W1630221750 hasConcept C41008148 @default.
- W1630221750 hasConcept C81917197 @default.
- W1630221750 hasConcept C8642999 @default.
- W1630221750 hasConceptScore W1630221750C119857082 @default.
- W1630221750 hasConceptScore W1630221750C154945302 @default.
- W1630221750 hasConceptScore W1630221750C41008148 @default.
- W1630221750 hasConceptScore W1630221750C81917197 @default.
- W1630221750 hasConceptScore W1630221750C8642999 @default.
- W1630221750 hasLocation W16302217501 @default.
- W1630221750 hasOpenAccess W1630221750 @default.
- W1630221750 hasPrimaryLocation W16302217501 @default.
- W1630221750 hasRelatedWork W3199608561 @default.
- W1630221750 hasRelatedWork W4210794429 @default.
- W1630221750 hasRelatedWork W4223456145 @default.
- W1630221750 hasRelatedWork W4280535922 @default.
- W1630221750 hasRelatedWork W4283697347 @default.
- W1630221750 hasRelatedWork W4295309597 @default.
- W1630221750 hasRelatedWork W4295681619 @default.
- W1630221750 hasRelatedWork W4304128395 @default.
- W1630221750 hasRelatedWork W4307195028 @default.
- W1630221750 hasRelatedWork W4309113015 @default.
- W1630221750 isParatext "false" @default.
- W1630221750 isRetracted "false" @default.
- W1630221750 magId "1630221750" @default.
- W1630221750 workType "article" @default.