Matches in SemOpenAlex for { <https://semopenalex.org/work/W1630272287> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W1630272287 endingPage "19" @default.
- W1630272287 startingPage "6" @default.
- W1630272287 abstract "Attachment prediction is the task of automatically identifying email messages that should contain an attachment. This can be useful to tackle the problem of sending out emails but forgetting to include the relevant attachment (something that happens all too often). A common Information Retrieval (IR) approach in analyzing documents such as emails is to treat the entire document as a bag of words. Here we propose a finer-grained analysis to address the problem. We aim at identifying individual sentences within an email that refer to an attachment. If we detect any such sentence, we predict that the email should have an attachment. Using part of the Enron corpus for evaluation we find that our finer-grained approach outperforms previously reported document-level attachment prediction in similar evaluation settings. A second contribution this paper makes is to give another successful example of the ‘wisdom of the crowd’ when collecting annotations needed to train the attachment prediction algorithm. The aggregated non-expert judgements collected on Amazon’s Mechanical Turk can be used as a substitute for much more costly expert judgements." @default.
- W1630272287 created "2016-06-24" @default.
- W1630272287 creator A5001632477 @default.
- W1630272287 creator A5014534985 @default.
- W1630272287 creator A5062380176 @default.
- W1630272287 date "2010-01-01" @default.
- W1630272287 modified "2023-10-16" @default.
- W1630272287 title "Sentence-Level Attachment Prediction" @default.
- W1630272287 cites W1603920809 @default.
- W1630272287 cites W1970381522 @default.
- W1630272287 cites W2004184082 @default.
- W1630272287 cites W2023450550 @default.
- W1630272287 cites W2094159338 @default.
- W1630272287 cites W2117955073 @default.
- W1630272287 cites W2120366045 @default.
- W1630272287 cites W2121702730 @default.
- W1630272287 cites W2143280940 @default.
- W1630272287 cites W2143539737 @default.
- W1630272287 cites W2150290224 @default.
- W1630272287 cites W2164777277 @default.
- W1630272287 cites W3004721394 @default.
- W1630272287 cites W4241931738 @default.
- W1630272287 doi "https://doi.org/10.1007/978-3-642-13084-7_2" @default.
- W1630272287 hasPublicationYear "2010" @default.
- W1630272287 type Work @default.
- W1630272287 sameAs 1630272287 @default.
- W1630272287 citedByCount "14" @default.
- W1630272287 countsByYear W16302722872012 @default.
- W1630272287 countsByYear W16302722872013 @default.
- W1630272287 countsByYear W16302722872014 @default.
- W1630272287 countsByYear W16302722872017 @default.
- W1630272287 countsByYear W16302722872020 @default.
- W1630272287 crossrefType "book-chapter" @default.
- W1630272287 hasAuthorship W1630272287A5001632477 @default.
- W1630272287 hasAuthorship W1630272287A5014534985 @default.
- W1630272287 hasAuthorship W1630272287A5062380176 @default.
- W1630272287 hasConcept C119857082 @default.
- W1630272287 hasConcept C138885662 @default.
- W1630272287 hasConcept C154945302 @default.
- W1630272287 hasConcept C162324750 @default.
- W1630272287 hasConcept C187736073 @default.
- W1630272287 hasConcept C204321447 @default.
- W1630272287 hasConcept C23123220 @default.
- W1630272287 hasConcept C2777530160 @default.
- W1630272287 hasConcept C2780451532 @default.
- W1630272287 hasConcept C41008148 @default.
- W1630272287 hasConcept C41895202 @default.
- W1630272287 hasConcept C7149132 @default.
- W1630272287 hasConceptScore W1630272287C119857082 @default.
- W1630272287 hasConceptScore W1630272287C138885662 @default.
- W1630272287 hasConceptScore W1630272287C154945302 @default.
- W1630272287 hasConceptScore W1630272287C162324750 @default.
- W1630272287 hasConceptScore W1630272287C187736073 @default.
- W1630272287 hasConceptScore W1630272287C204321447 @default.
- W1630272287 hasConceptScore W1630272287C23123220 @default.
- W1630272287 hasConceptScore W1630272287C2777530160 @default.
- W1630272287 hasConceptScore W1630272287C2780451532 @default.
- W1630272287 hasConceptScore W1630272287C41008148 @default.
- W1630272287 hasConceptScore W1630272287C41895202 @default.
- W1630272287 hasConceptScore W1630272287C7149132 @default.
- W1630272287 hasLocation W16302722871 @default.
- W1630272287 hasOpenAccess W1630272287 @default.
- W1630272287 hasPrimaryLocation W16302722871 @default.
- W1630272287 hasRelatedWork W2104218666 @default.
- W1630272287 hasRelatedWork W2145559838 @default.
- W1630272287 hasRelatedWork W2164121020 @default.
- W1630272287 hasRelatedWork W2794885965 @default.
- W1630272287 hasRelatedWork W2959635497 @default.
- W1630272287 hasRelatedWork W3116498279 @default.
- W1630272287 hasRelatedWork W3183027292 @default.
- W1630272287 hasRelatedWork W4287549553 @default.
- W1630272287 hasRelatedWork W4289718052 @default.
- W1630272287 hasRelatedWork W4310285384 @default.
- W1630272287 isParatext "false" @default.
- W1630272287 isRetracted "false" @default.
- W1630272287 magId "1630272287" @default.
- W1630272287 workType "book-chapter" @default.