Matches in SemOpenAlex for { <https://semopenalex.org/work/W1630543310> ?p ?o ?g. }
- W1630543310 endingPage "1321" @default.
- W1630543310 startingPage "1309" @default.
- W1630543310 abstract "Downscaling techniques can effectively improve the coarse resolution and poor representation of precipitation predicted by general circulation model (GCM). In this study, a statistical downscaling (SD) method, based on the singular value decomposition (SVD), is proposed for better representing the coupled variation between predictors and winter precipitation in China. By comparing current predictors from Climate Forecast System version 2 (CFSv2) of National Centers for Environmental Prediction and previous predictors from observation, the two best appropriate predictors, the winter sea level pressure (SLP) from the CFSv2 and the autumn sea-ice concentration (SIC) from observation, are selected to construct the SD model for prediction of winter precipitation in China. Three downscaling schemes are developed by involving the SLP, SIC, and both of them (i.e. SLP-scheme, SIC-scheme, and SS-scheme), respectively. Validations for the schemes show a considerable improvement of performance in predicting China winter precipitation, compared with the original CFSv2 output. The temporal and spatial anomaly correlation coefficient (ACC) and root mean square errors (RMSE) were estimated. For the cross validation, the spatial ACC are increased from ∼0.01 of the CFSv2 to >0.3 of the downscaling model. For the independent validation, the temporal RMSE from the downscaling schemes are all decreased more than 30%. In particular, the results using the SS-scheme showed relatively smaller RMSE than those of either the SLP-scheme or SIC-scheme, and hence can reproduce the precipitation anomaly in 2011 and 2012 winters more accurately." @default.
- W1630543310 created "2016-06-24" @default.
- W1630543310 creator A5022927661 @default.
- W1630543310 creator A5060002817 @default.
- W1630543310 date "2014-05-27" @default.
- W1630543310 modified "2023-09-27" @default.
- W1630543310 title "A hybrid statistical downscaling model for prediction of winter precipitation in China" @default.
- W1630543310 cites W1119102440 @default.
- W1630543310 cites W1557033613 @default.
- W1630543310 cites W1921449036 @default.
- W1630543310 cites W1967148539 @default.
- W1630543310 cites W1967722715 @default.
- W1630543310 cites W1971557440 @default.
- W1630543310 cites W1977316753 @default.
- W1630543310 cites W1985114715 @default.
- W1630543310 cites W1993171187 @default.
- W1630543310 cites W1998210775 @default.
- W1630543310 cites W2002244283 @default.
- W1630543310 cites W2004335479 @default.
- W1630543310 cites W2005944363 @default.
- W1630543310 cites W2006165291 @default.
- W1630543310 cites W2011616280 @default.
- W1630543310 cites W2013019431 @default.
- W1630543310 cites W2013387897 @default.
- W1630543310 cites W2024417959 @default.
- W1630543310 cites W2038294068 @default.
- W1630543310 cites W2051501633 @default.
- W1630543310 cites W2058651021 @default.
- W1630543310 cites W2060172488 @default.
- W1630543310 cites W2072927571 @default.
- W1630543310 cites W2074053945 @default.
- W1630543310 cites W2076704720 @default.
- W1630543310 cites W2076969359 @default.
- W1630543310 cites W2089580912 @default.
- W1630543310 cites W2090391905 @default.
- W1630543310 cites W2090488081 @default.
- W1630543310 cites W2093636245 @default.
- W1630543310 cites W2096655180 @default.
- W1630543310 cites W2104264170 @default.
- W1630543310 cites W2107733948 @default.
- W1630543310 cites W2111395244 @default.
- W1630543310 cites W2123995799 @default.
- W1630543310 cites W2173251738 @default.
- W1630543310 cites W2174132594 @default.
- W1630543310 cites W2174913496 @default.
- W1630543310 cites W2179386986 @default.
- W1630543310 cites W2264639510 @default.
- W1630543310 cites W2350418792 @default.
- W1630543310 cites W2357881513 @default.
- W1630543310 cites W3143535208 @default.
- W1630543310 cites W962415652 @default.
- W1630543310 doi "https://doi.org/10.1002/joc.4058" @default.
- W1630543310 hasPublicationYear "2014" @default.
- W1630543310 type Work @default.
- W1630543310 sameAs 1630543310 @default.
- W1630543310 citedByCount "25" @default.
- W1630543310 countsByYear W16305433102016 @default.
- W1630543310 countsByYear W16305433102017 @default.
- W1630543310 countsByYear W16305433102018 @default.
- W1630543310 countsByYear W16305433102019 @default.
- W1630543310 countsByYear W16305433102020 @default.
- W1630543310 countsByYear W16305433102021 @default.
- W1630543310 countsByYear W16305433102022 @default.
- W1630543310 countsByYear W16305433102023 @default.
- W1630543310 crossrefType "journal-article" @default.
- W1630543310 hasAuthorship W1630543310A5022927661 @default.
- W1630543310 hasAuthorship W1630543310A5060002817 @default.
- W1630543310 hasConcept C105795698 @default.
- W1630543310 hasConcept C107054158 @default.
- W1630543310 hasConcept C121332964 @default.
- W1630543310 hasConcept C127313418 @default.
- W1630543310 hasConcept C12997251 @default.
- W1630543310 hasConcept C139945424 @default.
- W1630543310 hasConcept C153294291 @default.
- W1630543310 hasConcept C205649164 @default.
- W1630543310 hasConcept C26873012 @default.
- W1630543310 hasConcept C2780092901 @default.
- W1630543310 hasConcept C2780161134 @default.
- W1630543310 hasConcept C33923547 @default.
- W1630543310 hasConcept C39432304 @default.
- W1630543310 hasConcept C41156917 @default.
- W1630543310 hasConcept C49204034 @default.
- W1630543310 hasConceptScore W1630543310C105795698 @default.
- W1630543310 hasConceptScore W1630543310C107054158 @default.
- W1630543310 hasConceptScore W1630543310C121332964 @default.
- W1630543310 hasConceptScore W1630543310C127313418 @default.
- W1630543310 hasConceptScore W1630543310C12997251 @default.
- W1630543310 hasConceptScore W1630543310C139945424 @default.
- W1630543310 hasConceptScore W1630543310C153294291 @default.
- W1630543310 hasConceptScore W1630543310C205649164 @default.
- W1630543310 hasConceptScore W1630543310C26873012 @default.
- W1630543310 hasConceptScore W1630543310C2780092901 @default.
- W1630543310 hasConceptScore W1630543310C2780161134 @default.
- W1630543310 hasConceptScore W1630543310C33923547 @default.
- W1630543310 hasConceptScore W1630543310C39432304 @default.
- W1630543310 hasConceptScore W1630543310C41156917 @default.
- W1630543310 hasConceptScore W1630543310C49204034 @default.
- W1630543310 hasIssue "7" @default.