Matches in SemOpenAlex for { <https://semopenalex.org/work/W1631483227> ?p ?o ?g. }
- W1631483227 abstract "Many real world systems evolve asynchronously in continuous time, for examplecomputer networks, sensor networks, mobile robots, and cellular metabolisms.Continuous time Bayesian Networks (CTBNs) model such stochastic systems incontinuous time using graphs to represent conditional independencies amongdiscrete-valued processes. Exact inference in a CTBN is often intractable as thestate space of the dynamic system grows exponentially with the number ofvariables.In this dissertation, we first focus on approximate inference in CTBNs. Wepresent an approximate inference algorithm based on importance sampling. Unlikeother approximate inference algorithms for CTBNs, our importance samplingalgorithm does not depend on complex computations, since our sampling procedureonly requires sampling from regular exponential distributions which can be donein constant time. We then extend it to continuous-time particle filtering andsmoothing algorithms. We also develop a Metropolis-Hasting algorithm for CTBNsusing importance sampling. These algorithms can estimate the expectation of anyfunction of a trajectory, conditioned on any evidence set containing the valuesof subsets of the variables over subsets of the time line.We then apply our approximate inference algorithms to learning social networkdynamics. Existing sociology models for social network dynamics require directobservation of the social networks. Furthermore, existing parameter estimationtechnique for these models uses forward sampling without considering the givenobservations, which affects the estimation accuracy. In this dissertation, wedemonstrate that these models can be viewed as CTBNs. Our sampling-basedapproximate inference method for CTBNs can be used as the basis of anexpectation-maximization procedure that achieves better accuracy in estimatingthe parameters of the model than the standard learning algorithm from thesociology literature. We extend the existing social network models to allow forindirect and asynchronous observations of the links. A Markov chain Monte Carlosampling algorithm for this new model permits estimation and inference.Experiments on both synthetic data and real social network data show that ourapproach achieves higher estimation accuracy, and can be applied to varioustypes of social data." @default.
- W1631483227 created "2016-06-24" @default.
- W1631483227 creator A5057529537 @default.
- W1631483227 date "2009-01-01" @default.
- W1631483227 modified "2023-09-27" @default.
- W1631483227 title "Continuous Time Bayesian Network Approximate Inference and Social Network Applications" @default.
- W1631483227 cites W101797636 @default.
- W1631483227 cites W12987287 @default.
- W1631483227 cites W1483307070 @default.
- W1631483227 cites W1492056975 @default.
- W1631483227 cites W1542813581 @default.
- W1631483227 cites W1543675445 @default.
- W1631483227 cites W1561981064 @default.
- W1631483227 cites W1563709661 @default.
- W1631483227 cites W1630331242 @default.
- W1631483227 cites W17127720 @default.
- W1631483227 cites W175854469 @default.
- W1631483227 cites W1872800509 @default.
- W1631483227 cites W1934021597 @default.
- W1631483227 cites W1978582243 @default.
- W1631483227 cites W2002810579 @default.
- W1631483227 cites W2020294948 @default.
- W1631483227 cites W2039750798 @default.
- W1631483227 cites W2048356439 @default.
- W1631483227 cites W2049633694 @default.
- W1631483227 cites W2066459332 @default.
- W1631483227 cites W2073697690 @default.
- W1631483227 cites W2076736556 @default.
- W1631483227 cites W2101586207 @default.
- W1631483227 cites W2103935902 @default.
- W1631483227 cites W2116208407 @default.
- W1631483227 cites W2143554828 @default.
- W1631483227 cites W2145538960 @default.
- W1631483227 cites W2155910443 @default.
- W1631483227 cites W2170120409 @default.
- W1631483227 cites W2172074709 @default.
- W1631483227 cites W2312830323 @default.
- W1631483227 cites W2420733993 @default.
- W1631483227 cites W2561773797 @default.
- W1631483227 cites W2963905603 @default.
- W1631483227 cites W2964298117 @default.
- W1631483227 cites W3021192559 @default.
- W1631483227 cites W76189818 @default.
- W1631483227 cites W2072634211 @default.
- W1631483227 hasPublicationYear "2009" @default.
- W1631483227 type Work @default.
- W1631483227 sameAs 1631483227 @default.
- W1631483227 citedByCount "6" @default.
- W1631483227 countsByYear W16314832272013 @default.
- W1631483227 countsByYear W16314832272014 @default.
- W1631483227 countsByYear W16314832272016 @default.
- W1631483227 countsByYear W16314832272017 @default.
- W1631483227 crossrefType "journal-article" @default.
- W1631483227 hasAuthorship W1631483227A5057529537 @default.
- W1631483227 hasConcept C105795698 @default.
- W1631483227 hasConcept C106131492 @default.
- W1631483227 hasConcept C107673813 @default.
- W1631483227 hasConcept C11413529 @default.
- W1631483227 hasConcept C119857082 @default.
- W1631483227 hasConcept C126255220 @default.
- W1631483227 hasConcept C140779682 @default.
- W1631483227 hasConcept C154945302 @default.
- W1631483227 hasConcept C158424031 @default.
- W1631483227 hasConcept C160234255 @default.
- W1631483227 hasConcept C19499675 @default.
- W1631483227 hasConcept C2776214188 @default.
- W1631483227 hasConcept C2777472644 @default.
- W1631483227 hasConcept C31972630 @default.
- W1631483227 hasConcept C33724603 @default.
- W1631483227 hasConcept C33923547 @default.
- W1631483227 hasConcept C41008148 @default.
- W1631483227 hasConcept C52740198 @default.
- W1631483227 hasConceptScore W1631483227C105795698 @default.
- W1631483227 hasConceptScore W1631483227C106131492 @default.
- W1631483227 hasConceptScore W1631483227C107673813 @default.
- W1631483227 hasConceptScore W1631483227C11413529 @default.
- W1631483227 hasConceptScore W1631483227C119857082 @default.
- W1631483227 hasConceptScore W1631483227C126255220 @default.
- W1631483227 hasConceptScore W1631483227C140779682 @default.
- W1631483227 hasConceptScore W1631483227C154945302 @default.
- W1631483227 hasConceptScore W1631483227C158424031 @default.
- W1631483227 hasConceptScore W1631483227C160234255 @default.
- W1631483227 hasConceptScore W1631483227C19499675 @default.
- W1631483227 hasConceptScore W1631483227C2776214188 @default.
- W1631483227 hasConceptScore W1631483227C2777472644 @default.
- W1631483227 hasConceptScore W1631483227C31972630 @default.
- W1631483227 hasConceptScore W1631483227C33724603 @default.
- W1631483227 hasConceptScore W1631483227C33923547 @default.
- W1631483227 hasConceptScore W1631483227C41008148 @default.
- W1631483227 hasConceptScore W1631483227C52740198 @default.
- W1631483227 hasLocation W16314832271 @default.
- W1631483227 hasOpenAccess W1631483227 @default.
- W1631483227 hasPrimaryLocation W16314832271 @default.
- W1631483227 hasRelatedWork W12987287 @default.
- W1631483227 hasRelatedWork W1494605253 @default.
- W1631483227 hasRelatedWork W1503402212 @default.
- W1631483227 hasRelatedWork W1511986666 @default.
- W1631483227 hasRelatedWork W1542813581 @default.
- W1631483227 hasRelatedWork W1563709661 @default.
- W1631483227 hasRelatedWork W1872800509 @default.