Matches in SemOpenAlex for { <https://semopenalex.org/work/W1632334713> ?p ?o ?g. }
- W1632334713 endingPage "415" @default.
- W1632334713 startingPage "407" @default.
- W1632334713 abstract "MicroRNAs (miRNAs) are small, endogenous, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. As high-throughput next generation sequencing (NGS) and Big Data rapidly accumulate for various species, efforts for in silico identification of miRNAs intensify. Surprisingly, the effect of the input genomics sequence on the robustness of miRNA prediction was not evaluated in detail to date. In the present study, we performed a homology-based miRNA and isomiRNA prediction of the 5D chromosome of bread wheat progenitor, Aegilops tauschii, using two distinct sequence data sets as input: (1) raw sequence reads obtained from 454-GS FLX Titanium sequencing platform and (2) an assembly constructed from these reads. We also compared this method with a number of available plant sequence datasets. We report here the identification of 62 and 22 miRNAs from raw reads and the assembly, respectively, of which 16 were predicted with high confidence from both datasets. While raw reads promoted sensitivity with the high number of miRNAs predicted, 55% (12 out of 22) of the assembly-based predictions were supported by previous observations, bringing specificity forward compared to the read-based predictions, of which only 37% were supported. Importantly, raw reads could identify several repeat-related miRNAs that could not be detected with the assembly. However, raw reads could not capture 6 miRNAs, for which the stem-loops could only be covered by the relatively longer sequences from the assembly. In summary, the comparison of miRNA datasets obtained by these two strategies revealed that utilization of raw reads, as well as assemblies for in silico prediction, have distinct advantages and disadvantages. Consideration of these important nuances can benefit future miRNA identification efforts in the current age of NGS and Big Data driven life sciences innovation." @default.
- W1632334713 created "2016-06-24" @default.
- W1632334713 creator A5015599718 @default.
- W1632334713 creator A5081714075 @default.
- W1632334713 date "2015-07-01" @default.
- W1632334713 modified "2023-09-25" @default.
- W1632334713 title "Harnessing NGS and Big Data Optimally: Comparison of miRNA Prediction from Assembled versus Non-assembled Sequencing Data—The Case of the Grass <i>Aegilops tauschii</i> Complex Genome" @default.
- W1632334713 cites W1608694486 @default.
- W1632334713 cites W163910812 @default.
- W1632334713 cites W1662794057 @default.
- W1632334713 cites W1970690244 @default.
- W1632334713 cites W1978153994 @default.
- W1632334713 cites W1979468478 @default.
- W1632334713 cites W1980492094 @default.
- W1632334713 cites W1982799052 @default.
- W1632334713 cites W1990813498 @default.
- W1632334713 cites W1996454352 @default.
- W1632334713 cites W2000708574 @default.
- W1632334713 cites W2009939135 @default.
- W1632334713 cites W2011637810 @default.
- W1632334713 cites W2019261864 @default.
- W1632334713 cites W2022572617 @default.
- W1632334713 cites W2025147628 @default.
- W1632334713 cites W2030573509 @default.
- W1632334713 cites W2032663499 @default.
- W1632334713 cites W2033934982 @default.
- W1632334713 cites W2036433025 @default.
- W1632334713 cites W2036646967 @default.
- W1632334713 cites W2044689550 @default.
- W1632334713 cites W2051535323 @default.
- W1632334713 cites W2058368252 @default.
- W1632334713 cites W2061127538 @default.
- W1632334713 cites W2061616850 @default.
- W1632334713 cites W2064187713 @default.
- W1632334713 cites W2071105916 @default.
- W1632334713 cites W2082976762 @default.
- W1632334713 cites W2093141907 @default.
- W1632334713 cites W2093991643 @default.
- W1632334713 cites W2094200136 @default.
- W1632334713 cites W2095780001 @default.
- W1632334713 cites W2096710722 @default.
- W1632334713 cites W2133022558 @default.
- W1632334713 cites W2133782353 @default.
- W1632334713 cites W2134995632 @default.
- W1632334713 cites W2138190969 @default.
- W1632334713 cites W2154513100 @default.
- W1632334713 cites W2156049845 @default.
- W1632334713 cites W2156852055 @default.
- W1632334713 cites W2168298894 @default.
- W1632334713 cites W2171418340 @default.
- W1632334713 cites W2342745220 @default.
- W1632334713 doi "https://doi.org/10.1089/omi.2015.0038" @default.
- W1632334713 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26061358" @default.
- W1632334713 hasPublicationYear "2015" @default.
- W1632334713 type Work @default.
- W1632334713 sameAs 1632334713 @default.
- W1632334713 citedByCount "19" @default.
- W1632334713 countsByYear W16323347132015 @default.
- W1632334713 countsByYear W16323347132016 @default.
- W1632334713 countsByYear W16323347132017 @default.
- W1632334713 countsByYear W16323347132018 @default.
- W1632334713 countsByYear W16323347132019 @default.
- W1632334713 countsByYear W16323347132020 @default.
- W1632334713 countsByYear W16323347132021 @default.
- W1632334713 countsByYear W16323347132022 @default.
- W1632334713 crossrefType "journal-article" @default.
- W1632334713 hasAuthorship W1632334713A5015599718 @default.
- W1632334713 hasAuthorship W1632334713A5081714075 @default.
- W1632334713 hasConcept C104317684 @default.
- W1632334713 hasConcept C141231307 @default.
- W1632334713 hasConcept C150194340 @default.
- W1632334713 hasConcept C162317418 @default.
- W1632334713 hasConcept C189206191 @default.
- W1632334713 hasConcept C18949551 @default.
- W1632334713 hasConcept C192953774 @default.
- W1632334713 hasConcept C2775905019 @default.
- W1632334713 hasConcept C2778083003 @default.
- W1632334713 hasConcept C51679486 @default.
- W1632334713 hasConcept C54355233 @default.
- W1632334713 hasConcept C70721500 @default.
- W1632334713 hasConcept C86803240 @default.
- W1632334713 hasConceptScore W1632334713C104317684 @default.
- W1632334713 hasConceptScore W1632334713C141231307 @default.
- W1632334713 hasConceptScore W1632334713C150194340 @default.
- W1632334713 hasConceptScore W1632334713C162317418 @default.
- W1632334713 hasConceptScore W1632334713C189206191 @default.
- W1632334713 hasConceptScore W1632334713C18949551 @default.
- W1632334713 hasConceptScore W1632334713C192953774 @default.
- W1632334713 hasConceptScore W1632334713C2775905019 @default.
- W1632334713 hasConceptScore W1632334713C2778083003 @default.
- W1632334713 hasConceptScore W1632334713C51679486 @default.
- W1632334713 hasConceptScore W1632334713C54355233 @default.
- W1632334713 hasConceptScore W1632334713C70721500 @default.
- W1632334713 hasConceptScore W1632334713C86803240 @default.
- W1632334713 hasIssue "7" @default.
- W1632334713 hasLocation W16323347131 @default.
- W1632334713 hasLocation W16323347132 @default.
- W1632334713 hasOpenAccess W1632334713 @default.