Matches in SemOpenAlex for { <https://semopenalex.org/work/W1632484412> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1632484412 abstract "The poor quality of a training dataset can have untoward consequences in software quality estimation problems. The presence of noise in software measurement data may hinder the prediction accuracy of a given learner. A filter improves the quality of training datasets by removing data that is likely noise. We evaluate the Ensemble Filter against the Partitioning Filter and the Classification Filter. These filtering techniques combine the predictions of base classifiers in such a way that an instance is identified as noisy if it is misclassified by a given number of these learners. The Partitioning Filter first splits the training dataset into subsets, and different base learners are induced on each subset. Two different implementations of the Partitioning Filter are presented: the Multiple-Partitioning Filter and the Iterative-Partitioning Filter. In contrast, the Ensemble Filter uses base classifiers induced on the entire training dataset. The filtering level and/or the number of iterations modify the filtering conservativeness: a conservative filter is less likely to remove good data at the expense of retaining noisy instances. A unique measure for comparing the relative efficiencies of two filters is also presented. Empirical studies on a high assurance software project evaluate the relative performances of the Ensemble Filter, Multiple-Partitioning Filter, Iterative-Partitioning Filter, and Classification Filter. Our study demonstrates that with a conservative filtering approach, using several different base learners can improve the efficiency of the filtering schemes." @default.
- W1632484412 created "2016-06-24" @default.
- W1632484412 creator A5045652377 @default.
- W1632484412 creator A5089170562 @default.
- W1632484412 date "2005-11-03" @default.
- W1632484412 modified "2023-09-23" @default.
- W1632484412 title "Evaluating noise elimination techniques for software quality estimation" @default.
- W1632484412 cites W1485751654 @default.
- W1632484412 cites W1488252886 @default.
- W1632484412 cites W1496447628 @default.
- W1632484412 cites W1500151553 @default.
- W1632484412 cites W1510346750 @default.
- W1632484412 cites W1513874326 @default.
- W1632484412 cites W1528113134 @default.
- W1632484412 cites W1529363039 @default.
- W1632484412 cites W1532470180 @default.
- W1632484412 cites W1568654892 @default.
- W1632484412 cites W1575623062 @default.
- W1632484412 cites W1591052160 @default.
- W1632484412 cites W159719520 @default.
- W1632484412 cites W1598493270 @default.
- W1632484412 cites W1630964756 @default.
- W1632484412 cites W1670263352 @default.
- W1632484412 cites W1689445748 @default.
- W1632484412 cites W1881647329 @default.
- W1632484412 cites W1895087 @default.
- W1632484412 cites W1898031563 @default.
- W1632484412 cites W1999011285 @default.
- W1632484412 cites W2058732827 @default.
- W1632484412 cites W2081050881 @default.
- W1632484412 cites W2083352779 @default.
- W1632484412 cites W2105544499 @default.
- W1632484412 cites W2107686700 @default.
- W1632484412 cites W2112339597 @default.
- W1632484412 cites W2122496402 @default.
- W1632484412 cites W2123504579 @default.
- W1632484412 cites W2128420091 @default.
- W1632484412 cites W2132166479 @default.
- W1632484412 cites W2147169507 @default.
- W1632484412 cites W2149493527 @default.
- W1632484412 cites W2164641162 @default.
- W1632484412 cites W2912934387 @default.
- W1632484412 cites W3100570787 @default.
- W1632484412 cites W41502859 @default.
- W1632484412 cites W615842445 @default.
- W1632484412 doi "https://doi.org/10.3233/ida-2005-9506" @default.
- W1632484412 hasPublicationYear "2005" @default.
- W1632484412 type Work @default.
- W1632484412 sameAs 1632484412 @default.
- W1632484412 citedByCount "1" @default.
- W1632484412 crossrefType "journal-article" @default.
- W1632484412 hasAuthorship W1632484412A5045652377 @default.
- W1632484412 hasAuthorship W1632484412A5089170562 @default.
- W1632484412 hasConcept C106131492 @default.
- W1632484412 hasConcept C11413529 @default.
- W1632484412 hasConcept C115961682 @default.
- W1632484412 hasConcept C119857082 @default.
- W1632484412 hasConcept C124101348 @default.
- W1632484412 hasConcept C154945302 @default.
- W1632484412 hasConcept C199360897 @default.
- W1632484412 hasConcept C22597639 @default.
- W1632484412 hasConcept C2777904410 @default.
- W1632484412 hasConcept C31972630 @default.
- W1632484412 hasConcept C41008148 @default.
- W1632484412 hasConcept C99498987 @default.
- W1632484412 hasConceptScore W1632484412C106131492 @default.
- W1632484412 hasConceptScore W1632484412C11413529 @default.
- W1632484412 hasConceptScore W1632484412C115961682 @default.
- W1632484412 hasConceptScore W1632484412C119857082 @default.
- W1632484412 hasConceptScore W1632484412C124101348 @default.
- W1632484412 hasConceptScore W1632484412C154945302 @default.
- W1632484412 hasConceptScore W1632484412C199360897 @default.
- W1632484412 hasConceptScore W1632484412C22597639 @default.
- W1632484412 hasConceptScore W1632484412C2777904410 @default.
- W1632484412 hasConceptScore W1632484412C31972630 @default.
- W1632484412 hasConceptScore W1632484412C41008148 @default.
- W1632484412 hasConceptScore W1632484412C99498987 @default.
- W1632484412 hasLocation W16324844121 @default.
- W1632484412 hasOpenAccess W1632484412 @default.
- W1632484412 hasPrimaryLocation W16324844121 @default.
- W1632484412 hasRelatedWork W1493704913 @default.
- W1632484412 hasRelatedWork W2087598578 @default.
- W1632484412 hasRelatedWork W2097331438 @default.
- W1632484412 hasRelatedWork W2114379787 @default.
- W1632484412 hasRelatedWork W2123249410 @default.
- W1632484412 hasRelatedWork W2160117953 @default.
- W1632484412 hasRelatedWork W2341384651 @default.
- W1632484412 hasRelatedWork W2620598404 @default.
- W1632484412 hasRelatedWork W3116020495 @default.
- W1632484412 hasRelatedWork W73319745 @default.
- W1632484412 isParatext "false" @default.
- W1632484412 isRetracted "false" @default.
- W1632484412 magId "1632484412" @default.
- W1632484412 workType "article" @default.