Matches in SemOpenAlex for { <https://semopenalex.org/work/W163257811> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W163257811 abstract "A 1-factorisation of a graph G is a decomposition of G into edge-disjoint 1-factors (1-regular spanning subgraphs). A perfect 1-factorisation is a 1-factorisation in which the union of every pair of distinct 1-factors is a Hamilton cycle; a 1-factorisation is uniform if the graphs resulting from the union of every pair of distinct 1-factors are isomorphic. We initiate the study of perfect 1-factorisations and uniform 1-factorisations of circulant graphs, a well-studied family of Cayley graphs, by determining whether or not such 1-factorisations exist for even order circulant graphs of small degree. For a bipartite circulant graph, we observe that having order congruent to 2 (mod 4) is a necessary condition for the existence of a perfect 1-factorisation. We prove that for bipartite 3-regular circulant graphs this necessary condition is also sufficient. Furthermore, the bipartite 3-regular circulant graphs of order 2 (mod 4) are the only 3-regular circulant graphs of order greater than 6 which admit a perfect 1-factorisation. The 4-regular case is more complex; we provide constructions of perfect 1-factorisations for many families of bipartite 4-regular circulant graphs of order 2 (mod 4); however, we also prove that there is an infinite family of such graphs no member of which admits a perfect 1-factorisation. We conjecture that a connected non-bipartite 4-regular circulant graph of order at least 8 does not admit a perfect 1-factorisation; we prove this conjecture for three distinct infinite families of non-bipartite 4-regular circulant graphs and show by computer search that the conjecture holds for small orders (at most 30). Several of our results are achieved by studying perfect 1-factorisations of a particular family of 4-regular graphs, denoted Dh, k for integers h, knwhere h g 2 and k g 3. These graphs are shown to be isomorphic to Cayley graphs when k is even and yet they are not vertex-transitive when k is odd (and hng 3). For small values of h, we make use of the structure of Dh,k to determine when it admits a perfect 1-factorisation and then use specific isomorphism results to obtain corresponding results for 4-regular circulant graphs. In this thesis the connected 3-regular circulant graphs that admit a perfect 1-factorisation are characterised and although the connected 4-regular circulant graphs that admit a perfect 1-factorisation have not yet been fully characterised, we provide many interesting theoretical results that establish the framework for such a characterisation.n" @default.
- W163257811 created "2016-06-24" @default.
- W163257811 creator A5089586756 @default.
- W163257811 date "2014-07-27" @default.
- W163257811 modified "2023-09-26" @default.
- W163257811 title "Perfect 1-Factorisations of Circulant Graphs" @default.
- W163257811 doi "https://doi.org/10.14264/uql.2014.98" @default.
- W163257811 hasPublicationYear "2014" @default.
- W163257811 type Work @default.
- W163257811 sameAs 163257811 @default.
- W163257811 citedByCount "1" @default.
- W163257811 countsByYear W1632578112014 @default.
- W163257811 crossrefType "dissertation" @default.
- W163257811 hasAuthorship W163257811A5089586756 @default.
- W163257811 hasConcept C102192266 @default.
- W163257811 hasConcept C11413529 @default.
- W163257811 hasConcept C114614502 @default.
- W163257811 hasConcept C115973184 @default.
- W163257811 hasConcept C118615104 @default.
- W163257811 hasConcept C132525143 @default.
- W163257811 hasConcept C160446614 @default.
- W163257811 hasConcept C170903109 @default.
- W163257811 hasConcept C187834632 @default.
- W163257811 hasConcept C197657726 @default.
- W163257811 hasConcept C203776342 @default.
- W163257811 hasConcept C22149727 @default.
- W163257811 hasConcept C2780990831 @default.
- W163257811 hasConcept C33923547 @default.
- W163257811 hasConcept C59824394 @default.
- W163257811 hasConcept C82190004 @default.
- W163257811 hasConceptScore W163257811C102192266 @default.
- W163257811 hasConceptScore W163257811C11413529 @default.
- W163257811 hasConceptScore W163257811C114614502 @default.
- W163257811 hasConceptScore W163257811C115973184 @default.
- W163257811 hasConceptScore W163257811C118615104 @default.
- W163257811 hasConceptScore W163257811C132525143 @default.
- W163257811 hasConceptScore W163257811C160446614 @default.
- W163257811 hasConceptScore W163257811C170903109 @default.
- W163257811 hasConceptScore W163257811C187834632 @default.
- W163257811 hasConceptScore W163257811C197657726 @default.
- W163257811 hasConceptScore W163257811C203776342 @default.
- W163257811 hasConceptScore W163257811C22149727 @default.
- W163257811 hasConceptScore W163257811C2780990831 @default.
- W163257811 hasConceptScore W163257811C33923547 @default.
- W163257811 hasConceptScore W163257811C59824394 @default.
- W163257811 hasConceptScore W163257811C82190004 @default.
- W163257811 hasLocation W1632578111 @default.
- W163257811 hasOpenAccess W163257811 @default.
- W163257811 hasPrimaryLocation W1632578111 @default.
- W163257811 hasRelatedWork W1025283250 @default.
- W163257811 hasRelatedWork W1482329008 @default.
- W163257811 hasRelatedWork W1502957472 @default.
- W163257811 hasRelatedWork W1634991226 @default.
- W163257811 hasRelatedWork W1954384522 @default.
- W163257811 hasRelatedWork W1976047764 @default.
- W163257811 hasRelatedWork W2018718538 @default.
- W163257811 hasRelatedWork W2027653655 @default.
- W163257811 hasRelatedWork W2058913799 @default.
- W163257811 hasRelatedWork W2156487713 @default.
- W163257811 hasRelatedWork W2474869841 @default.
- W163257811 hasRelatedWork W2595629050 @default.
- W163257811 hasRelatedWork W2963229522 @default.
- W163257811 hasRelatedWork W2980662656 @default.
- W163257811 hasRelatedWork W3003860422 @default.
- W163257811 hasRelatedWork W3048233797 @default.
- W163257811 hasRelatedWork W3098202922 @default.
- W163257811 hasRelatedWork W3195289762 @default.
- W163257811 hasRelatedWork W3211919395 @default.
- W163257811 hasRelatedWork W35928485 @default.
- W163257811 isParatext "false" @default.
- W163257811 isRetracted "false" @default.
- W163257811 magId "163257811" @default.
- W163257811 workType "dissertation" @default.