Matches in SemOpenAlex for { <https://semopenalex.org/work/W163289901> ?p ?o ?g. }
- W163289901 endingPage "222" @default.
- W163289901 startingPage "201" @default.
- W163289901 abstract "Control system theory has been based on certain well understood and accepted techniques such as transfer function-based methods, adaptive control, robust control, nonlinear systems theory and state-space methods. Besides these classical techniques, in recent decades, many successful results have been obtained by incorporating artificial neural networks in classical control structures. Due to their universal approximation property, neural network structures are the perfect candidates for designing controllers for complex nonlinear systems. These successful results have caused a number of control engineers to focus their interest on the results and algorithms of the machine learning and computational intelligence community and, at the same time, to find new inspiration in the biological neural structures of living organisms in their most evolved and complex form: the human brain. In this chapter we discuss two algorithms that were developed, based on a biologically inspired structure, with the purpose of learning the optimal state feedback controller for a linear system, while at the same time performing continuous-time online control for the system at hand. Moreover, since the algorithms are related to the reinforcement learning techniques in which an agent tries to maximize the total amount of reward received while interacting with an unknown environment, the optimal controller will be obtained while only making use of the input-to-state system dynamics. Mathematically speaking, the solution of the algebraic Riccati equation underlying the optimal control problem will be obtained without making use of any knowledge of the system internal dynamics. The two algorithms are built on iteration between the policy evaluation and policy update steps until updating the control policy no longer improves the system performance. Both algorithms can be characterized as direct adaptive optimal control types since the optimal control solution is determined without using an explicit, a priori obtained, model of the system internal dynamics. The effectiveness of the algorithms is shown and their performances compared while finding the optimal state feedback dynamics of an F-16 autopilot." @default.
- W163289901 created "2016-06-24" @default.
- W163289901 creator A5016137188 @default.
- W163289901 creator A5047724723 @default.
- W163289901 date "2008-01-01" @default.
- W163289901 modified "2023-09-27" @default.
- W163289901 title "Direct Adaptive Optimal Control: Biologically Inspired Feedback Control" @default.
- W163289901 cites W1616818660 @default.
- W163289901 cites W1854776945 @default.
- W163289901 cites W1979772489 @default.
- W163289901 cites W2005437559 @default.
- W163289901 cites W2011866373 @default.
- W163289901 cites W2012592267 @default.
- W163289901 cites W2027968610 @default.
- W163289901 cites W2037025184 @default.
- W163289901 cites W2044605743 @default.
- W163289901 cites W2060052647 @default.
- W163289901 cites W2095590702 @default.
- W163289901 cites W2106814169 @default.
- W163289901 cites W2127389037 @default.
- W163289901 cites W2147170031 @default.
- W163289901 cites W2160561608 @default.
- W163289901 doi "https://doi.org/10.1007/978-0-8176-4795-7_10" @default.
- W163289901 hasPublicationYear "2008" @default.
- W163289901 type Work @default.
- W163289901 sameAs 163289901 @default.
- W163289901 citedByCount "1" @default.
- W163289901 countsByYear W1632899012016 @default.
- W163289901 crossrefType "book-chapter" @default.
- W163289901 hasAuthorship W163289901A5016137188 @default.
- W163289901 hasAuthorship W163289901A5047724723 @default.
- W163289901 hasConcept C105795698 @default.
- W163289901 hasConcept C107464732 @default.
- W163289901 hasConcept C119599485 @default.
- W163289901 hasConcept C121332964 @default.
- W163289901 hasConcept C126255220 @default.
- W163289901 hasConcept C127413603 @default.
- W163289901 hasConcept C134306372 @default.
- W163289901 hasConcept C13847129 @default.
- W163289901 hasConcept C154945302 @default.
- W163289901 hasConcept C158622935 @default.
- W163289901 hasConcept C17500928 @default.
- W163289901 hasConcept C203479927 @default.
- W163289901 hasConcept C204495892 @default.
- W163289901 hasConcept C2775924081 @default.
- W163289901 hasConcept C33923547 @default.
- W163289901 hasConcept C41008148 @default.
- W163289901 hasConcept C45473103 @default.
- W163289901 hasConcept C47446073 @default.
- W163289901 hasConcept C50644808 @default.
- W163289901 hasConcept C62520636 @default.
- W163289901 hasConcept C6557445 @default.
- W163289901 hasConcept C72434380 @default.
- W163289901 hasConcept C78045399 @default.
- W163289901 hasConcept C86803240 @default.
- W163289901 hasConcept C91575142 @default.
- W163289901 hasConcept C97541855 @default.
- W163289901 hasConcept C98779006 @default.
- W163289901 hasConceptScore W163289901C105795698 @default.
- W163289901 hasConceptScore W163289901C107464732 @default.
- W163289901 hasConceptScore W163289901C119599485 @default.
- W163289901 hasConceptScore W163289901C121332964 @default.
- W163289901 hasConceptScore W163289901C126255220 @default.
- W163289901 hasConceptScore W163289901C127413603 @default.
- W163289901 hasConceptScore W163289901C134306372 @default.
- W163289901 hasConceptScore W163289901C13847129 @default.
- W163289901 hasConceptScore W163289901C154945302 @default.
- W163289901 hasConceptScore W163289901C158622935 @default.
- W163289901 hasConceptScore W163289901C17500928 @default.
- W163289901 hasConceptScore W163289901C203479927 @default.
- W163289901 hasConceptScore W163289901C204495892 @default.
- W163289901 hasConceptScore W163289901C2775924081 @default.
- W163289901 hasConceptScore W163289901C33923547 @default.
- W163289901 hasConceptScore W163289901C41008148 @default.
- W163289901 hasConceptScore W163289901C45473103 @default.
- W163289901 hasConceptScore W163289901C47446073 @default.
- W163289901 hasConceptScore W163289901C50644808 @default.
- W163289901 hasConceptScore W163289901C62520636 @default.
- W163289901 hasConceptScore W163289901C6557445 @default.
- W163289901 hasConceptScore W163289901C72434380 @default.
- W163289901 hasConceptScore W163289901C78045399 @default.
- W163289901 hasConceptScore W163289901C86803240 @default.
- W163289901 hasConceptScore W163289901C91575142 @default.
- W163289901 hasConceptScore W163289901C97541855 @default.
- W163289901 hasConceptScore W163289901C98779006 @default.
- W163289901 hasLocation W1632899011 @default.
- W163289901 hasOpenAccess W163289901 @default.
- W163289901 hasPrimaryLocation W1632899011 @default.
- W163289901 hasRelatedWork W1180345760 @default.
- W163289901 hasRelatedWork W1997350256 @default.
- W163289901 hasRelatedWork W2123214107 @default.
- W163289901 hasRelatedWork W2139918612 @default.
- W163289901 hasRelatedWork W2382427071 @default.
- W163289901 hasRelatedWork W2508543520 @default.
- W163289901 hasRelatedWork W2740717381 @default.
- W163289901 hasRelatedWork W2771559794 @default.
- W163289901 hasRelatedWork W3143255854 @default.
- W163289901 hasRelatedWork W4225513363 @default.