Matches in SemOpenAlex for { <https://semopenalex.org/work/W1636693978> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1636693978 endingPage "167" @default.
- W1636693978 startingPage "165" @default.
- W1636693978 abstract "A computer-aided detection (CAD) system for the identification of pulmonary nodules in lowdose multi-detector helical CT images with 1.25-mm slice thickness is being developed in the framework of the INFN-supported MAGIC-5 Italian project. The basic modules of our lung-CAD system, a dotenhancement filter for nodule candidate selection and a voxel-based neural classifier for false-positive finding reduction, are described. Preliminary results obtained on the so-far collected database of lung CT scans are discussed. a local maximum detector) is then applied to the filter output to detect the filtered-signal peaks. Figure 2. Some examples of false positive findings generated by the dot-enhancement filter. Since most FP findings are provided by crossings between blood vessels (see Fig. 2), we attempted to reduce the amount of FP/scan by developing a procedure which we called voxel-based neural approach (VBNA). According to that method, each voxel of a region of interest (ROI) is characterized by the grey level intensity values of its neighbors (see Fig. 3). We developed, implemented and compared two different VBNA procedures. In the first, the CT values of the voxels in a 3D neighborhood of each voxel of a ROI are rolled down into vectors of features (147 features) to be analyzed by a neural classifier. In the second procedure (Gori, I. & Mattiuzzi, M. 2005), 6 additional features constituted by the eigenvalues of the gradient and the Hessian matrices are computed for each voxel and encoded to the feature vectors (153 features). A feed-forward neural network is implemented at this stage to assign each voxel either to the nodule or normal tissue target class. A candidate nodule is then characterized as “CAD nodule” if the number of pixels within its ROI tagged as “nodule” by the neural classifier is above some relative threshold. A free response receiver operating characteristic (FROC) curve for our CAD system can therefore be evaluated at different threshold levels. Figure 3. Voxel-based neural approach to false-positive reduction. 3 DATA ANALYSIS AND RESULTS The CAD system was developed and tested on a dataset of low-dose (screening setting: 140 kV, 70÷80 mA) CT scans with reconstructed slice thickness of 1.25 mm. The scans were collected and annotated by experienced radiologists in the framework of the screening trial being conducted in Italy (Italung-CT). The database available for this study consists of 14 scans, containing 24 internal nodules. Each scan is a sequence of about 300 slices stored in the DICOM (Digital Imaging and COmmunications in Medicine) format. First of all, the lung volume is segmented out of the whole 3D data array by means of a purposely built segmentation algorithm that identifies the internal region of the lung (Antonelli et al. 2005). The 3D dot-enhancement filter applied to the selected lung regions shows a very high sensitivity. In particular, the lists generated by the peak-detector algorithm for all CT are empirically truncated so to include all annotated nodules. According to this procedure, a 100% sensitivity to internal nodules is obtained at a maximum (average) number of 54 (52.3) FP/scan. With respect to the VBNA procedure for FP reduction, the dataset was randomly partitioned into train and test sets; the performances of the trained neural networks were evaluated both on the test sets and on the whole dataset. In the first VBNA approach, 147 features, derived from a 2D region of 7x7 voxels for 3 consecutive slices with the voxel to be classified in the center, constitute each vector of the feature dataset. Two three-layer feed-forward neural networks with 147 input, were trained on two different random partitions of the dataset into train and test sets. The performances achieved in each trial for the correct classification of individual pixels are reported in Table 1, where the sensitivity and the specificity values obtained on the test sets, on the whole datasets and the average values on the two trials are shown. Table 1. VBNA with 147 features ______________________________________________ test train+test _______________ _______________ sens % spec % sens % spec % ______________________________________________" @default.
- W1636693978 created "2016-06-24" @default.
- W1636693978 creator A5004460160 @default.
- W1636693978 creator A5005434603 @default.
- W1636693978 creator A5053399221 @default.
- W1636693978 creator A5058242219 @default.
- W1636693978 creator A5090488784 @default.
- W1636693978 date "2006-01-01" @default.
- W1636693978 modified "2023-09-26" @default.
- W1636693978 title "Computer-aided detection of pulmonary nodules in low-dose CT." @default.
- W1636693978 cites W1970881091 @default.
- W1636693978 cites W1971997700 @default.
- W1636693978 cites W2015948192 @default.
- W1636693978 cites W2058550737 @default.
- W1636693978 hasPublicationYear "2006" @default.
- W1636693978 type Work @default.
- W1636693978 sameAs 1636693978 @default.
- W1636693978 citedByCount "1" @default.
- W1636693978 crossrefType "journal-article" @default.
- W1636693978 hasAuthorship W1636693978A5004460160 @default.
- W1636693978 hasAuthorship W1636693978A5005434603 @default.
- W1636693978 hasAuthorship W1636693978A5053399221 @default.
- W1636693978 hasAuthorship W1636693978A5058242219 @default.
- W1636693978 hasAuthorship W1636693978A5090488784 @default.
- W1636693978 hasConcept C106131492 @default.
- W1636693978 hasConcept C127413603 @default.
- W1636693978 hasConcept C153180895 @default.
- W1636693978 hasConcept C154945302 @default.
- W1636693978 hasConcept C194789388 @default.
- W1636693978 hasConcept C19609008 @default.
- W1636693978 hasConcept C199639397 @default.
- W1636693978 hasConcept C2779549770 @default.
- W1636693978 hasConcept C2989005 @default.
- W1636693978 hasConcept C31972630 @default.
- W1636693978 hasConcept C41008148 @default.
- W1636693978 hasConcept C54170458 @default.
- W1636693978 hasConcept C71924100 @default.
- W1636693978 hasConcept C76155785 @default.
- W1636693978 hasConcept C94915269 @default.
- W1636693978 hasConcept C95623464 @default.
- W1636693978 hasConceptScore W1636693978C106131492 @default.
- W1636693978 hasConceptScore W1636693978C127413603 @default.
- W1636693978 hasConceptScore W1636693978C153180895 @default.
- W1636693978 hasConceptScore W1636693978C154945302 @default.
- W1636693978 hasConceptScore W1636693978C194789388 @default.
- W1636693978 hasConceptScore W1636693978C19609008 @default.
- W1636693978 hasConceptScore W1636693978C199639397 @default.
- W1636693978 hasConceptScore W1636693978C2779549770 @default.
- W1636693978 hasConceptScore W1636693978C2989005 @default.
- W1636693978 hasConceptScore W1636693978C31972630 @default.
- W1636693978 hasConceptScore W1636693978C41008148 @default.
- W1636693978 hasConceptScore W1636693978C54170458 @default.
- W1636693978 hasConceptScore W1636693978C71924100 @default.
- W1636693978 hasConceptScore W1636693978C76155785 @default.
- W1636693978 hasConceptScore W1636693978C94915269 @default.
- W1636693978 hasConceptScore W1636693978C95623464 @default.
- W1636693978 hasLocation W16366939781 @default.
- W1636693978 hasOpenAccess W1636693978 @default.
- W1636693978 hasPrimaryLocation W16366939781 @default.
- W1636693978 hasRelatedWork W1965436314 @default.
- W1636693978 hasRelatedWork W1980955719 @default.
- W1636693978 hasRelatedWork W2000996262 @default.
- W1636693978 hasRelatedWork W2018087199 @default.
- W1636693978 hasRelatedWork W2046379057 @default.
- W1636693978 hasRelatedWork W2048589595 @default.
- W1636693978 hasRelatedWork W2077628611 @default.
- W1636693978 hasRelatedWork W2093277593 @default.
- W1636693978 hasRelatedWork W2132014319 @default.
- W1636693978 hasRelatedWork W2135152966 @default.
- W1636693978 hasRelatedWork W2161690989 @default.
- W1636693978 hasRelatedWork W2598191160 @default.
- W1636693978 hasRelatedWork W2793564293 @default.
- W1636693978 hasRelatedWork W2891893035 @default.
- W1636693978 hasRelatedWork W2894861644 @default.
- W1636693978 hasRelatedWork W2896620274 @default.
- W1636693978 hasRelatedWork W2916965918 @default.
- W1636693978 hasRelatedWork W2997397622 @default.
- W1636693978 hasRelatedWork W3045695385 @default.
- W1636693978 hasRelatedWork W2925439380 @default.
- W1636693978 isParatext "false" @default.
- W1636693978 isRetracted "false" @default.
- W1636693978 magId "1636693978" @default.
- W1636693978 workType "article" @default.