Matches in SemOpenAlex for { <https://semopenalex.org/work/W1638448021> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W1638448021 abstract "The goal of this thesis is to study the transport properties and real-time dynamics of quantum magnets and ultra-cold atomic gases in one spatial dimension using numerical methods. The focus will be on the discussion of diffusive versus ballistic dynamics along with a detailed analysis of characteristic velocities in ballistic regimes. For the simulation of time-dependent density profiles we use the adaptive time-dependent density matrix renormalization group (DMRG). This numerical method allows for the simulation of time-dependent wave functions close to as well as far from equilibrium in a controlled manner.The studies of one-dimensional quantum magnets are partially motivated by the experimental evidence for a highly anisotropic and for insulators comparably high thermal conductivity of certain cuprates. We use linear response theory to study transport coefficients at arbitrary temperatures by diagonalizing small systems exactly and then calculating the current-current correlation functions. As first application we discuss the spin transport in the spin-$1/2$ Heisenberg chain with anisotropic exchange interactions (XXZ-chain). The second application of exact diagonalization, here in combination with time-dependent DMRG, is a discussion of the transverse components of the current-current correlation function. While usually only a Zeeman field is considered in the theory of transport coefficients, we here investigate the dynamic induced by an additional transverse magnetic field. We find that in this scenario the current-current correlation function exhibits coherent oscillations. In addition a second non-trivial frequency, different from the one expected from the usual Larmor precession, emerges and is studied varying temperature and field.Finally we calculate the frequency-dependent spin and heat conductivity of dimerized spin chains in a magnetic field. Motivated by the recent experimental studies of the phase diagram of C$_5$H$_{12}$N$_2$CuBr$_4$ we take the dimerized chain as a minimal model that exhibits features of the low-temperature region of the observed phase diagram. As a main result, the spin and heat conductivity obtained from linear response theory are enhanced in the field-induced gapless phase. The last application in the field of one-dimensional quantum magnets is the simulation of time-dependent energy-density wave-packets close to as well as far from equilibrium using the time-dependent density renormalization group. The main results are ballistic energy dynamics independently of how far out-of-equilibrium the initial state is and a detailed understanding of the average expansion velocity.The applications in the field of ultra-cold atomic gases focus on the sudden expansion of an initially trapped gas into an empty optical lattice. This setup was recently realized in an experiment performed by U. Schneider {it et al.} and discussed in the context of electronic transport in the two-dimensional and the three-dimensional Fermi-Hubbard model. Here we investigate the sudden expansion of three different setups:For the expansion of a spin-balanced cloud of fermions, we identify the ballistic regime, and therein investigate the average expansion velocity of the cloud. As a main result the expansion velocity is determined by a small subset of the initial condition over a wide range of parameters. For instance, the Mott-insulating phase of the Hubbard model is characterized by a constant expansion velocity independently of the strength of the interaction.In the case of spinless bosons, we study the expansion from initial states that have a fixed particle number per lattice site and a certain concentration of defects. We study the expansion velocity as a function of interaction strength and investigate whether the time-dependent momentum distribution functions indicate a dynamical quasi-condensation.The last example is the sudden expansion of a spin-polarized gas of fermions in the presence of attractive interactions. This study is motivated by current effort to experimentally detect the Fulde-Ferrell-Larkin-Ovchinnikov state. Our results for the time-dependent momentum distribution functions and the wave-function of the pair condensate suggest that the signatures of the FFLO state vanish quickly, yet a stationary form of the momentum distribution also emerges fast. The latter is shown to be determined by the initial conditions, which might eventually allow for an indirect detection of the FFLO phase." @default.
- W1638448021 created "2016-06-24" @default.
- W1638448021 creator A5038827762 @default.
- W1638448021 date "2012-08-08" @default.
- W1638448021 modified "2023-09-24" @default.
- W1638448021 title "Transport and real-time dynamics in one-dimensional quantum magnets and ultra-cold atomic gases" @default.
- W1638448021 hasPublicationYear "2012" @default.
- W1638448021 type Work @default.
- W1638448021 sameAs 1638448021 @default.
- W1638448021 citedByCount "0" @default.
- W1638448021 crossrefType "journal-article" @default.
- W1638448021 hasAuthorship W1638448021A5038827762 @default.
- W1638448021 hasConcept C121332964 @default.
- W1638448021 hasConcept C121864883 @default.
- W1638448021 hasConcept C130095028 @default.
- W1638448021 hasConcept C142199849 @default.
- W1638448021 hasConcept C147120987 @default.
- W1638448021 hasConcept C191486275 @default.
- W1638448021 hasConcept C192683347 @default.
- W1638448021 hasConcept C26873012 @default.
- W1638448021 hasConcept C29547527 @default.
- W1638448021 hasConcept C31198834 @default.
- W1638448021 hasConcept C42704618 @default.
- W1638448021 hasConcept C62520636 @default.
- W1638448021 hasConcept C84114770 @default.
- W1638448021 hasConcept C97355855 @default.
- W1638448021 hasConceptScore W1638448021C121332964 @default.
- W1638448021 hasConceptScore W1638448021C121864883 @default.
- W1638448021 hasConceptScore W1638448021C130095028 @default.
- W1638448021 hasConceptScore W1638448021C142199849 @default.
- W1638448021 hasConceptScore W1638448021C147120987 @default.
- W1638448021 hasConceptScore W1638448021C191486275 @default.
- W1638448021 hasConceptScore W1638448021C192683347 @default.
- W1638448021 hasConceptScore W1638448021C26873012 @default.
- W1638448021 hasConceptScore W1638448021C29547527 @default.
- W1638448021 hasConceptScore W1638448021C31198834 @default.
- W1638448021 hasConceptScore W1638448021C42704618 @default.
- W1638448021 hasConceptScore W1638448021C62520636 @default.
- W1638448021 hasConceptScore W1638448021C84114770 @default.
- W1638448021 hasConceptScore W1638448021C97355855 @default.
- W1638448021 hasLocation W16384480211 @default.
- W1638448021 hasOpenAccess W1638448021 @default.
- W1638448021 hasPrimaryLocation W16384480211 @default.
- W1638448021 hasRelatedWork W1509789573 @default.
- W1638448021 hasRelatedWork W155246768 @default.
- W1638448021 hasRelatedWork W180623343 @default.
- W1638448021 hasRelatedWork W2012341559 @default.
- W1638448021 hasRelatedWork W2019854239 @default.
- W1638448021 hasRelatedWork W2025819980 @default.
- W1638448021 hasRelatedWork W2086761776 @default.
- W1638448021 hasRelatedWork W2151753022 @default.
- W1638448021 hasRelatedWork W2172158890 @default.
- W1638448021 hasRelatedWork W2324452588 @default.
- W1638448021 hasRelatedWork W2741062831 @default.
- W1638448021 hasRelatedWork W2896032116 @default.
- W1638448021 hasRelatedWork W2901900698 @default.
- W1638448021 hasRelatedWork W3002456074 @default.
- W1638448021 hasRelatedWork W30850739 @default.
- W1638448021 hasRelatedWork W3106241716 @default.
- W1638448021 hasRelatedWork W3107772409 @default.
- W1638448021 hasRelatedWork W3115718775 @default.
- W1638448021 hasRelatedWork W3165794469 @default.
- W1638448021 hasRelatedWork W3170187297 @default.
- W1638448021 isParatext "false" @default.
- W1638448021 isRetracted "false" @default.
- W1638448021 magId "1638448021" @default.
- W1638448021 workType "article" @default.