Matches in SemOpenAlex for { <https://semopenalex.org/work/W1638476861> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1638476861 abstract "This paper describes an improvement in the upper bound for the magnitude of a coefficient of a term in the chromatic polynomial of a general graph. If $a_r$ is the coefficient of the $q^r$ term in the chromatic polynomial $P(G,q)$, where $q$ is the number of colors, then we find $a_r le {e choose v-r} - {e-g+2 choose v-r-g+2} + {e-k_g-g+2 choose v-r-g+2} - sum _{n=1}^{k_g-ell_g}sum_{m=1}^{ell_g-1} {e-g+1-n-m choose v-r-g} - delta_{g,3}sum_{n=1}^{k_g+ell_{g+1}^*-ell_g} {e-ell_g-g+1-n choose v-r-g}$, where $k_g$ is the number of circuits of length $g$ and $ell_g$ and $ell_{g+1}^*$ are certain numbers defined in the text." @default.
- W1638476861 created "2016-06-24" @default.
- W1638476861 creator A5069022916 @default.
- W1638476861 date "2001-02-27" @default.
- W1638476861 modified "2023-09-27" @default.
- W1638476861 title "Upper Bound for the Coefficients of Chromatic polynomials" @default.
- W1638476861 cites W1965511886 @default.
- W1638476861 cites W2004308928 @default.
- W1638476861 cites W2008263650 @default.
- W1638476861 cites W2016286503 @default.
- W1638476861 cites W2319873605 @default.
- W1638476861 hasPublicationYear "2001" @default.
- W1638476861 type Work @default.
- W1638476861 sameAs 1638476861 @default.
- W1638476861 citedByCount "0" @default.
- W1638476861 crossrefType "posted-content" @default.
- W1638476861 hasAuthorship W1638476861A5069022916 @default.
- W1638476861 hasConcept C114614502 @default.
- W1638476861 hasConcept C118615104 @default.
- W1638476861 hasConcept C121332964 @default.
- W1638476861 hasConcept C126385604 @default.
- W1638476861 hasConcept C132525143 @default.
- W1638476861 hasConcept C134306372 @default.
- W1638476861 hasConcept C196956537 @default.
- W1638476861 hasConcept C33923547 @default.
- W1638476861 hasConcept C61797465 @default.
- W1638476861 hasConcept C62520636 @default.
- W1638476861 hasConcept C77553402 @default.
- W1638476861 hasConcept C90119067 @default.
- W1638476861 hasConceptScore W1638476861C114614502 @default.
- W1638476861 hasConceptScore W1638476861C118615104 @default.
- W1638476861 hasConceptScore W1638476861C121332964 @default.
- W1638476861 hasConceptScore W1638476861C126385604 @default.
- W1638476861 hasConceptScore W1638476861C132525143 @default.
- W1638476861 hasConceptScore W1638476861C134306372 @default.
- W1638476861 hasConceptScore W1638476861C196956537 @default.
- W1638476861 hasConceptScore W1638476861C33923547 @default.
- W1638476861 hasConceptScore W1638476861C61797465 @default.
- W1638476861 hasConceptScore W1638476861C62520636 @default.
- W1638476861 hasConceptScore W1638476861C77553402 @default.
- W1638476861 hasConceptScore W1638476861C90119067 @default.
- W1638476861 hasLocation W16384768611 @default.
- W1638476861 hasOpenAccess W1638476861 @default.
- W1638476861 hasPrimaryLocation W16384768611 @default.
- W1638476861 hasRelatedWork W129378856 @default.
- W1638476861 hasRelatedWork W1546641668 @default.
- W1638476861 hasRelatedWork W1803479356 @default.
- W1638476861 hasRelatedWork W1993168358 @default.
- W1638476861 hasRelatedWork W1999909137 @default.
- W1638476861 hasRelatedWork W2001197693 @default.
- W1638476861 hasRelatedWork W2003216770 @default.
- W1638476861 hasRelatedWork W2005812153 @default.
- W1638476861 hasRelatedWork W2042474679 @default.
- W1638476861 hasRelatedWork W2045191725 @default.
- W1638476861 hasRelatedWork W2050599192 @default.
- W1638476861 hasRelatedWork W2054556934 @default.
- W1638476861 hasRelatedWork W2070691606 @default.
- W1638476861 hasRelatedWork W2077150734 @default.
- W1638476861 hasRelatedWork W2148611466 @default.
- W1638476861 hasRelatedWork W2760027901 @default.
- W1638476861 hasRelatedWork W2889397088 @default.
- W1638476861 isParatext "false" @default.
- W1638476861 isRetracted "false" @default.
- W1638476861 magId "1638476861" @default.
- W1638476861 workType "article" @default.