Matches in SemOpenAlex for { <https://semopenalex.org/work/W163899013> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W163899013 abstract "Given integers r>1, n>1 and q> n-2, we consider projective varieties X of dimension r+1 such that through n generic points of X passes a rational curve of degree q, contained in X. More precisely, we study the class X_{r+1,n}(q) of such varieties which moreover generate a projective space of the maximal dimension. We determine all varieties of a class X_{r+1,n}(q) when q is not equal to 2n-3. In particuliar, we show that there exists a variety X' in P^{r+n-1}, of minimal degree and a birational map F: X'---> X which sends a generic section of X' by a P^{n-1} onto a rational normal curve of degree q. Without hypothesis on q, we define a quasi-grassmannian structure on the space of the rational normal curves of degree q contained in a variety X of the class X_{r+1,n}(q). We prove that X is of the form described above if and only if this quasi-grassmannian structure is flat. We also give examples of varieties of the classes X_{r+1,3}(3) et X_{r+1,4}(5) which are not of this form." @default.
- W163899013 created "2016-06-24" @default.
- W163899013 creator A5009280036 @default.
- W163899013 creator A5046482444 @default.
- W163899013 date "2013-01-01" @default.
- W163899013 modified "2023-10-03" @default.
- W163899013 title "Sur les variétés X dans P^N telles que par n points passe une courbe de X de degré donné" @default.
- W163899013 cites W102802113 @default.
- W163899013 cites W2015340285 @default.
- W163899013 cites W2016663852 @default.
- W163899013 cites W2500166908 @default.
- W163899013 cites W2742462749 @default.
- W163899013 cites W3143437597 @default.
- W163899013 cites W614653115 @default.
- W163899013 hasPublicationYear "2013" @default.
- W163899013 type Work @default.
- W163899013 sameAs 163899013 @default.
- W163899013 citedByCount "1" @default.
- W163899013 crossrefType "journal-article" @default.
- W163899013 hasAuthorship W163899013A5009280036 @default.
- W163899013 hasAuthorship W163899013A5046482444 @default.
- W163899013 hasBestOaLocation W1638990133 @default.
- W163899013 hasConcept C138885662 @default.
- W163899013 hasConcept C15708023 @default.
- W163899013 hasConceptScore W163899013C138885662 @default.
- W163899013 hasConceptScore W163899013C15708023 @default.
- W163899013 hasLocation W1638990131 @default.
- W163899013 hasLocation W1638990132 @default.
- W163899013 hasLocation W1638990133 @default.
- W163899013 hasOpenAccess W163899013 @default.
- W163899013 hasPrimaryLocation W1638990131 @default.
- W163899013 hasRelatedWork W2603296253 @default.
- W163899013 hasRelatedWork W2609344916 @default.
- W163899013 hasRelatedWork W2748952813 @default.
- W163899013 hasRelatedWork W2780307509 @default.
- W163899013 hasRelatedWork W2899084033 @default.
- W163899013 hasRelatedWork W4210390885 @default.
- W163899013 hasRelatedWork W59019880 @default.
- W163899013 hasRelatedWork W93312527 @default.
- W163899013 hasRelatedWork W2308060692 @default.
- W163899013 hasRelatedWork W2478882070 @default.
- W163899013 isParatext "false" @default.
- W163899013 isRetracted "false" @default.
- W163899013 magId "163899013" @default.
- W163899013 workType "article" @default.