Matches in SemOpenAlex for { <https://semopenalex.org/work/W163911803> ?p ?o ?g. }
- W163911803 endingPage "441" @default.
- W163911803 startingPage "403" @default.
- W163911803 abstract "Biological membranes have developed to separate different compartments of organisms and cells. There is a large number of rather different functions which membranes have to fulfil: (1) they control the material and energy fluxes of metabolic processes, (2) they provide a wrapping protecting the compartments from chemical and physical attacks of the environment, (3) they provide interfaces at which specific biochemical machineries can operate (e.g., membrane bound enzymes), (4) they are equipped for signal transduction, (5) they possess the necessary stability and flexibility to allow cell division, and endo- and exocytosis as well as migration, (6) they present anchoring structures that enable cell-to-cell and cell-to-matrix physical interactions and intercellular communication. These are certainly not all functions of membranes as new functionalities are continuously reported. Since the biological membranes separate essentially aqueous solutions, such separating borders—if they should possess a reasonable stability and also flexibility combined with selective permeability—have to be built up of hydrophobic molecules exposing to both sides a similar interface. It was one of the most crucial and most lucky circumstances for the development and existence of life that certain amphiphilic molecules are able to assemble in bilayer structures (membranes), which—on one side—possess a rather high physical and chemical stability, and—on the other side—are able to incorporate foreign molecules for modifying both the physical properties as well as the permeability of the membranes for defined chemical species. The importance of the chemical function of membranes and all its constituents, e.g., ion channels, pore peptides, transport peptides, etc., is generally accepted. The fluid-mosaic model proposed by Singer and Nicolson [1] is still the basis to understand the biological, chemical, and physical properties of biological membranes. The importance of the purely mechanical properties of membranes came much later into the focus of research. The reasons are probably the dominance of biochemical thinking and biochemical models among biologists and medical researchers, as well as a certain lack of appropriate methods to probe mechanical properties of membranes. The last decades have changed that situation due to the development of techniques like the Atomic Force Microscopy, Fluorescence Microscopy, Micropipette Aspiration, Raman Microspectroscopy, advanced Calorimetry, etc. This chapter is aimed at elucidating how the properties of membranes can be investigated by studying the interaction of vesicles with a very hydrophobic surface, i.e., with the surface of a mercury electrode. This interaction is unique as it results in a complete disintegration of the bilayer membrane of the vesicles and the formation of an island of adsorbed lipid molecules, i.e., a monolayer island. This process can be followed by current-time measurements (chronoamperometry), which allow studying the complete disintegration process in all its details: the different steps of that disintegration can be resolved on the time scale and the activation parameters can be determined. Most interestingly, the kinetics of vesicle disintegration on mercury share important features with the process of vesicle fusion and, thus, sheds light also on mechanisms of endocytosis and exocytosis. Most importantly, not only artificial vesicles (liposomes) can be studied with this approach, but also reconstituted plasma membrane vesicles and even intact mitochondria. Hence, one can expect that the method may provide in future studies also information on the membrane properties of various other vesicles, including exosomes, and may allow investigating various aspects of drug action in relation to membrane properties (transmembrane transport, tissue targeting, bioavailability, etc.), and also the impact of pathophysiological conditions (e.g., oxidative modification) on membrane properties, on a hitherto not or only hardly accessible level." @default.
- W163911803 created "2016-06-24" @default.
- W163911803 creator A5030505222 @default.
- W163911803 creator A5046692356 @default.
- W163911803 creator A5076219142 @default.
- W163911803 date "2013-01-01" @default.
- W163911803 modified "2023-10-14" @default.
- W163911803 title "Model of Tumor Growth and Response to Radiation" @default.
- W163911803 cites W1532261161 @default.
- W163911803 cites W1965248659 @default.
- W163911803 cites W1966791626 @default.
- W163911803 cites W1972808685 @default.
- W163911803 cites W1977034238 @default.
- W163911803 cites W1981904897 @default.
- W163911803 cites W1982502427 @default.
- W163911803 cites W1997925433 @default.
- W163911803 cites W1998526204 @default.
- W163911803 cites W1998939825 @default.
- W163911803 cites W2000902397 @default.
- W163911803 cites W200447247 @default.
- W163911803 cites W2005533337 @default.
- W163911803 cites W2006218526 @default.
- W163911803 cites W2009963985 @default.
- W163911803 cites W2010806004 @default.
- W163911803 cites W2015261804 @default.
- W163911803 cites W2015503561 @default.
- W163911803 cites W2019802059 @default.
- W163911803 cites W2021832976 @default.
- W163911803 cites W2021942016 @default.
- W163911803 cites W2023427658 @default.
- W163911803 cites W2025921638 @default.
- W163911803 cites W2030264960 @default.
- W163911803 cites W2030892741 @default.
- W163911803 cites W2036005360 @default.
- W163911803 cites W2038307966 @default.
- W163911803 cites W2041585886 @default.
- W163911803 cites W2041867986 @default.
- W163911803 cites W2042685976 @default.
- W163911803 cites W2045543866 @default.
- W163911803 cites W2051202148 @default.
- W163911803 cites W2052845466 @default.
- W163911803 cites W2054648014 @default.
- W163911803 cites W2055009621 @default.
- W163911803 cites W2057838299 @default.
- W163911803 cites W2061009737 @default.
- W163911803 cites W2062007210 @default.
- W163911803 cites W2073759134 @default.
- W163911803 cites W2076229538 @default.
- W163911803 cites W2077227511 @default.
- W163911803 cites W2078140686 @default.
- W163911803 cites W2080843536 @default.
- W163911803 cites W2081084899 @default.
- W163911803 cites W2083336230 @default.
- W163911803 cites W2090982381 @default.
- W163911803 cites W2096698447 @default.
- W163911803 cites W2097813267 @default.
- W163911803 cites W2099432930 @default.
- W163911803 cites W2102085111 @default.
- W163911803 cites W2105465672 @default.
- W163911803 cites W2105648889 @default.
- W163911803 cites W2111663010 @default.
- W163911803 cites W2113436678 @default.
- W163911803 cites W2121467746 @default.
- W163911803 cites W2132305988 @default.
- W163911803 cites W2132530500 @default.
- W163911803 cites W2134577006 @default.
- W163911803 cites W2137330819 @default.
- W163911803 cites W2138687531 @default.
- W163911803 cites W2147212734 @default.
- W163911803 cites W2159084624 @default.
- W163911803 cites W2162806480 @default.
- W163911803 cites W2167414381 @default.
- W163911803 cites W2170239844 @default.
- W163911803 cites W2171262669 @default.
- W163911803 cites W2216142352 @default.
- W163911803 cites W2278685458 @default.
- W163911803 cites W4239578492 @default.
- W163911803 doi "https://doi.org/10.1007/978-1-4614-6148-7_11" @default.
- W163911803 hasPublicationYear "2013" @default.
- W163911803 type Work @default.
- W163911803 sameAs 163911803 @default.
- W163911803 citedByCount "0" @default.
- W163911803 crossrefType "book-chapter" @default.
- W163911803 hasAuthorship W163911803A5030505222 @default.
- W163911803 hasAuthorship W163911803A5046692356 @default.
- W163911803 hasAuthorship W163911803A5076219142 @default.
- W163911803 hasConcept C120665830 @default.
- W163911803 hasConcept C121332964 @default.
- W163911803 hasConcept C153385146 @default.
- W163911803 hasConcept C39432304 @default.
- W163911803 hasConceptScore W163911803C120665830 @default.
- W163911803 hasConceptScore W163911803C121332964 @default.
- W163911803 hasConceptScore W163911803C153385146 @default.
- W163911803 hasConceptScore W163911803C39432304 @default.
- W163911803 hasLocation W1639118031 @default.
- W163911803 hasOpenAccess W163911803 @default.
- W163911803 hasPrimaryLocation W1639118031 @default.
- W163911803 hasRelatedWork W1969282119 @default.